\(T=2m^4+2m^2+12m+18\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 2 2021

\(T=\left(2m^4-4m^3+8m^2\right)+\left(4m^3-8m^2+16m\right)+\left(2m^2-4m+8\right)+10\)

\(T=2m^2\left(m^2-2m+4\right)+4m\left(m^2-2m+4\right)+2\left(m^2-2m+4\right)+10\)

\(T=2\left(m^2-2m+4\right)\left(m^2+2m+1\right)+10\)

\(T=2\left(m^2-2m+4\right)\left(m+1\right)^2+10\)

\(T=2\left[\left(m-1\right)^2+3\right]\left(m+1\right)^2+10\ge10\)

\(T_{min}=10\) khi \(m=-1\)

NV
6 tháng 11 2019

Hình như bạn ghi đề ko đúng, ở nửa đoạn \([-2;0)\) thì ko thể xác định được GTNN của hàm số khi \(m>0\)

7 tháng 11 2019

mk viết đúng ak bn : )

AH
Akai Haruma
Giáo viên
15 tháng 10 2020

Lời giải:

$2m^2+4m+4=2(m^2+2m+1)+2=2(m+1)^2+2\geq 2$ với mọi $m\in\mathbb{R}$

$\Rightarrow \sqrt{2m^2+4m+4}\geq \sqrt{2}$

$\Rightarrow A=\frac{1}{\sqrt{2m^2+4m+4}}\leq \frac{1}{\sqrt{2}}$

Vậy GTLN của $A=\frac{1}{\sqrt{2}}$ khi $m+1=0\Leftrightarrow m=-1$

AH
Akai Haruma
Giáo viên
30 tháng 10 2020

Lời giải:

Để hàm số xác định trên $x\in [0;2]$ thì:
\(\left\{\begin{matrix} x+2m-1\geq 0\\ 4-2m-\frac{x}{2}\geq 0\end{matrix}\right., \forall x\in [0;2]\)

\(\Leftrightarrow \left\{\begin{matrix} m\geq \frac{1-x}{2}\\ m\leq 2-\frac{x}{4}\end{matrix}\right., \forall x\in [0;2]\)

\(\Leftrightarrow \left\{\begin{matrix} m\geq \frac{1-0}{2}\\ m\leq 2-\frac{2}{4}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m\geq \frac{1}{2}\\ m\leq \frac{3}{2}\end{matrix}\right.\)

\(\Leftrightarrow m\in [\frac{1}{2}; \frac{3}{2}]\)

8 tháng 1 2017

1. Ta có \(1+x^2\ge2x\), \(1+y^2\ge2y\), \(1+z^2\ge2z\)

Suy ra \(P=\frac{x}{1+x^2}+\frac{y}{1+y^2}+\frac{z}{1+z^2}\le\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{3}{2}\)

Chọn D. \(P\le\frac{1}{2}\)

9 tháng 1 2017

2. a) Áp dụng BĐT Bunhiacopxki, ta có

\(\left(\frac{1}{x}+\frac{4}{y}\right)\left(x+y\right)\ge\left[\left(\sqrt{\frac{1}{x}.x}\right)^2+\left(\sqrt{\frac{4}{y}.y}\right)^2\right]=\left(1^2+2^2\right)\)

\(\Rightarrow\frac{1}{x}+\frac{4}{y}\ge1\)

Đẳng thức xảy ra khi \(\left\{\begin{matrix}\frac{1}{x^2}=\frac{4}{y^2}\\x+y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{\begin{matrix}x=\frac{10}{3}\\y=\frac{5}{3}\end{matrix}\right.\)