Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2x+1}{x^2+2}\)
a)Tìm GTLN.
với x=0 có A=1/2 với x khác 0 chia cả tử mẫu cho x^2 ; đặt 1/x=y ta có
\(A=\frac{2x+1}{x^2+2}=\frac{\frac{2}{x}+\frac{1}{x^2}}{1+\frac{2}{x^2}}=\frac{2y+y^2}{1+2y^2}=\frac{2y^2+1-y^2+2y-1}{2y^2+1}=\frac{\left(2y^2+1\right)-\left(y^2-2y+1\right)}{2y^2+1}=1-\frac{\left(y-1\right)^2}{2y^2+1}\)
\(A=\frac{2x+1}{x^2+2}=1-\frac{\left(y-1\right)^2}{2y^2+1}\le1\) đẳng thức khi y=1=> x=1 (*)=> GTLN(A)=1
b) tìm GTNN.
\(A+\frac{1}{2}=\frac{2x+1}{x^2+2}+\frac{1}{2}=\frac{2\left(2x+1\right)+\left(x^2+2\right)}{x^2+2}=\frac{x^2-4x+4}{x^2+2}=\frac{\left(x-2\right)^2}{x^2+2}\ge0\)
\(A+\frac{1}{2}\ge0\Rightarrow A\ge-\frac{1}{2}\) đẳng thức khi x=2 (**)=> GTNN (A)=-1/2
Từ (*)&(**) ta có \(-\frac{1}{2}\le A\le1\)
p/s: mình cố tình (a)&(b) với hai cách khác nhau cho bạn lựa chọn
\(\Rightarrow\left(x-7\right)\left(x^2-x+1\right)=\left(x^2+1\right)\left(x+6\right)\)
\(\Leftrightarrow x^3-8x^2+8x-7=x^3+6x^2+x+6\)
\(\Leftrightarrow-8x^2+8x-7=6x^2+x+6\)
\(\Leftrightarrow14x^2-7x+13=0\)
Mà \(14x^2-7x+13=14\left(x-\frac{1}{4}\right)^2+\frac{97}{8}>0\forall x\)
Vậy phương trình có tập nghiệm: \(S=\varnothing\)
có bạn nào giải hộ mình theo cách giải phương trình ko
hộ mình với
a)\(\frac{3xy+6}{6xy+12}=\frac{1}{2}\Leftrightarrow\left(3xy+6\right)\cdot2=\left(6xy+12\right)\cdot1\)
\(\Leftrightarrow6xy+12=6xy+12\)
Vậy.......
b)\(\frac{x^2-xy}{5y^2-5xy}=\frac{x}{5y}\Leftrightarrow\left(x^2-xy\right)\cdot5y=\left(5y^2-5xy\right)\cdot x\)
\(\Leftrightarrow5x^2y-5xy^2=5xy^2-5x^2y\)
Vậy.....
\(Q=\frac{x^2+1}{x^2+6}=1-\frac{5}{x^2+6}\)
Có :\(x^2+6\ge6\)
\(\frac{5}{x^2+6}\le\frac{5}{6}\)
\(\Rightarrow Q=1-\frac{5}{x^2+6}\ge1-\frac{5}{6}=\frac{1}{6}\)
\(\Rightarrow Q_{min}=\frac{1}{6}\Leftrightarrow x^2=0\Rightarrow x=0\)