K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2017

bạn nhóm . tích đầu và tích cuối . 2 tích giữa . r giải bt nhé

26 tháng 4 2017

thanks nha, mình biết rùi 

21 tháng 5 2015

1.  x≥1 <=> \(\frac{1}{x}\le1\Leftrightarrow\frac{1}{x}+1\le2\Leftrightarrow A\le2\Rightarrow MaxA=2\Leftrightarrow x=1\)

2. Áp dụng bđt cosi cho x>0. ta có: \(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\Leftrightarrow P\ge2\Rightarrow MinP=2\Leftrightarrow x=\frac{1}{x}\Leftrightarrow x=1\)

 

21 tháng 5 2015

3: \(A=\frac{x^2+x+4}{x+1}=\frac{\left(x^2+2x+1\right)-\left(x+1\right)+4}{x+1}=x+1-1+\frac{4}{x+1}\)

áp dụng cosi cho 2 số dương ta có: \(x+1+\frac{4}{x+1}\ge2\sqrt{x+1.\frac{4}{x+1}}=2\Leftrightarrow A+1\ge2\Rightarrow A\ge3\Rightarrow MinA=3\Leftrightarrow x+1=\frac{4}{x+1}\Leftrightarrow x=1\)

22 tháng 10 2017

\(\text {Đặt } a = x-1, b = 3-x.\\ \text {Ta có: } a + b = 2.\\ A = a^4 + b^4 + 6a^2b^2 = (a^2+b^2)^2 + (2ab)^2\\ \ge\frac{1}{2} (a^2+b^2+2ab)^2 = \frac{1}{2}(a+b)^4 = 8\)

\(\text {Theo bất đẳng thức } 2(a^2+b^2) \ge (a+b)^2\)

\(\text {Đẳng thức xảy ra khi } a = b \Leftrightarrow x = 2.\)

Cách khác:

Nếu "dự đoán" được đẳng thức xảy ra khi a = b, hay x = 2 mà chưa chứng minh được như trên, có thể làm như sau:

+ Tính A tại x = 2 (A = 8)

+ Phân tích (A - 8) thành nhân tử của (x-2)

Cụ thể

\(A - 8 = 8(x^4-8x^3+24x^2-32x+16)\\ = (x-2)^4 \ge 0\\ \Rightarrow A \ge 8\)

NV
5 tháng 5 2021

\(A=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)\)

\(A=\left(x^2+5x+4\right)\left(x^2+5x+6\right)\)

\(A=\left(x^2+5x+4\right)\left(x^2+5x+4+2\right)\)

\(A=\left(x^2+5x+4\right)^2+2\left(x^2+5x+4\right)\)

\(A=\left(x^2+5x+4\right)^2+2\left(x^2+5x+4\right)+1-1\)

\(A=\left(x^2+5x+5\right)^2-1\ge-1\)

\(A_{min}=-1\) khi \(x^2+5x+5=0\)

18 tháng 9 2017

Cau 1: Ta có: 
A=x^2 - 2*3x + 9 +2(y^2 - 2y +1) + 7 
=(x-3)^2 +2(y-1)^2 +7 >+ 7 
=> minA= 7 <=> x=3 và y=1

18 tháng 9 2017

câu 1 đâu có y

12 tháng 3 2017

\(P=\frac{x+3\sqrt{x-1}+1}{x+4\sqrt{x-1}+2}=\frac{\left(x-1\right)+3\sqrt{x-1}+2}{\left(x-1\right)+4\sqrt{x-1}+3}=\frac{y^2+3y+2}{y^2+4y+3}\) với  \(y=\sqrt{x-1}\Rightarrow y\ge0\)

nên  \(P=\frac{y+2}{y+3}=1-\frac{1}{y+3}\ge1-\frac{1}{3}=\frac{2}{3}\)

Dấu  \(''=''\)  xảy ra khi  \(y=0\)  hay \(x=1\)

Kết luận:  ...

12 tháng 3 2017

Có người làm rồi nhé b

NV
12 tháng 1

a.

\(A=\left|x-3\right|+\left|x-4\right|+\left|x-7\right|\)

\(A=\left|x-3\right|+\left|7-x\right|+\left|x-4\right|\)

Áp dụng BĐT trị tuyệt đối:

\(A\ge\left|x-3+7-x\right|+\left|x-4\right|\)

\(\Rightarrow A\ge4+\left|x-4\right|\ge4\)

\(\Rightarrow A_{min}=4\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\left(x-3\right)\left(7-x\right)\ge0\\x-4=0\end{matrix}\right.\) \(\Rightarrow x=4\)

Câu b đã giải bên dưới