Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. x≥1 <=> \(\frac{1}{x}\le1\Leftrightarrow\frac{1}{x}+1\le2\Leftrightarrow A\le2\Rightarrow MaxA=2\Leftrightarrow x=1\)
2. Áp dụng bđt cosi cho x>0. ta có: \(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\Leftrightarrow P\ge2\Rightarrow MinP=2\Leftrightarrow x=\frac{1}{x}\Leftrightarrow x=1\)
3: \(A=\frac{x^2+x+4}{x+1}=\frac{\left(x^2+2x+1\right)-\left(x+1\right)+4}{x+1}=x+1-1+\frac{4}{x+1}\)
áp dụng cosi cho 2 số dương ta có: \(x+1+\frac{4}{x+1}\ge2\sqrt{x+1.\frac{4}{x+1}}=2\Leftrightarrow A+1\ge2\Rightarrow A\ge3\Rightarrow MinA=3\Leftrightarrow x+1=\frac{4}{x+1}\Leftrightarrow x=1\)
\(\text {Đặt } a = x-1, b = 3-x.\\ \text {Ta có: } a + b = 2.\\ A = a^4 + b^4 + 6a^2b^2 = (a^2+b^2)^2 + (2ab)^2\\ \ge\frac{1}{2} (a^2+b^2+2ab)^2 = \frac{1}{2}(a+b)^4 = 8\)
\(\text {Theo bất đẳng thức } 2(a^2+b^2) \ge (a+b)^2\)
\(\text {Đẳng thức xảy ra khi } a = b \Leftrightarrow x = 2.\)
Cách khác:
Nếu "dự đoán" được đẳng thức xảy ra khi a = b, hay x = 2 mà chưa chứng minh được như trên, có thể làm như sau:
+ Tính A tại x = 2 (A = 8)
+ Phân tích (A - 8) thành nhân tử của (x-2)
Cụ thể
\(A - 8 = 8(x^4-8x^3+24x^2-32x+16)\\ = (x-2)^4 \ge 0\\ \Rightarrow A \ge 8\)
\(A=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)\)
\(A=\left(x^2+5x+4\right)\left(x^2+5x+6\right)\)
\(A=\left(x^2+5x+4\right)\left(x^2+5x+4+2\right)\)
\(A=\left(x^2+5x+4\right)^2+2\left(x^2+5x+4\right)\)
\(A=\left(x^2+5x+4\right)^2+2\left(x^2+5x+4\right)+1-1\)
\(A=\left(x^2+5x+5\right)^2-1\ge-1\)
\(A_{min}=-1\) khi \(x^2+5x+5=0\)
Cau 1: Ta có:
A=x^2 - 2*3x + 9 +2(y^2 - 2y +1) + 7
=(x-3)^2 +2(y-1)^2 +7 >+ 7
=> minA= 7 <=> x=3 và y=1
\(P=\frac{x+3\sqrt{x-1}+1}{x+4\sqrt{x-1}+2}=\frac{\left(x-1\right)+3\sqrt{x-1}+2}{\left(x-1\right)+4\sqrt{x-1}+3}=\frac{y^2+3y+2}{y^2+4y+3}\) với \(y=\sqrt{x-1}\Rightarrow y\ge0\)
nên \(P=\frac{y+2}{y+3}=1-\frac{1}{y+3}\ge1-\frac{1}{3}=\frac{2}{3}\)
Dấu \(''=''\) xảy ra khi \(y=0\) hay \(x=1\)
Kết luận: ...
Bài 1: a, Tìm GTNN của A = ∣x - 3∣ + ∣x - 4∣ + ∣x - 7∣ b, Tìm x, y thoả mãn ∣x - 2∣ + ∣ y²⁰ + 9∣ = 9
a.
\(A=\left|x-3\right|+\left|x-4\right|+\left|x-7\right|\)
\(A=\left|x-3\right|+\left|7-x\right|+\left|x-4\right|\)
Áp dụng BĐT trị tuyệt đối:
\(A\ge\left|x-3+7-x\right|+\left|x-4\right|\)
\(\Rightarrow A\ge4+\left|x-4\right|\ge4\)
\(\Rightarrow A_{min}=4\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\left(x-3\right)\left(7-x\right)\ge0\\x-4=0\end{matrix}\right.\) \(\Rightarrow x=4\)
Câu b đã giải bên dưới
bạn nhóm . tích đầu và tích cuối . 2 tích giữa . r giải bt nhé
thanks nha, mình biết rùi