Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-2012\right)^2+\left(x+2013\right)^2\)
\(=x^2-2.2012+2012^2+x^2+2.2013+2013^2\)
\(=2x^2+2x+2012^2+2013^2\)
\(=2\left(x^2+x+\frac{1}{4}\right)+8100312,5\)
\(=2\left(x+\frac{1}{2}\right)^2+8100312,5\)
Bí
alibaba
kudo shinichi sai oy
bài đúng nè:
https://olm.vn/hoi-dap/detail/12167075509.html
P=(x-2012)^2 +(x+2013)^2
đặt x-2012=t ta được:
P=t^2+(t+4025)^2
=t^2+t^2+8050t+4025^2
=2t^2+8050t+4025^2
=2(t^2+4024t)+4025^2
=2(t+4025/2)^2+4025^2-4025^2/2
Dấu '=' xảy ra khi t+4025/2=0 =>t=-4025/2
=>x-2012=-4025/2
=>x=-1/2
Vậy GTNN của P là P=4025^2-4025^2/2 với x=-1/2
Chúc bn hok tốt
Đúng thì k nha
Áp dụng BĐT cô si cho 2 số dương ta được
(x-2012)^2+(x+2013)^2>=2(x-2012)(x+2013)
=> P >= 2(x^2+x-4050156)
= 2(x^2+1/4)-8100312,5 >= -8100312,5
Min P=8100312,5
Dấu "=" xảy ra <=> x= -1/2
Đặt
x-2012 = a , ta sẽ có :
P= \(a^2+\left(a+4025\right)^2\)
\(=a^2+a^2+8050a+4025^2\)
\(=2a^2+8050a+4025^2\)
\(=2\left(a^2+4025a\right)+4025^2\)
= 2( \(a^2+2\cdot\dfrac{4025}{2}\cdot a+\dfrac{4025^2}{4}\))\(-\dfrac{4025^2}{4}+4025^2\)
= \(2\left(a+\dfrac{4025}{2}\right)^2+4025^2-\dfrac{4025^2}{2}\)
\(=2\left(a+\dfrac{4025}{2}\right)^2+\dfrac{4025\left(2\cdot4025-4025\right)}{2}\)
\(=2\left(a+\dfrac{4025}{2}\right)^2+\dfrac{4025^2}{2}\ge\dfrac{4025^2}{2}\)
=> MinP = \(\dfrac{4025^2}{2}\) khi \(a+\dfrac{4025}{2}=0\Rightarrow a=-\dfrac{4025}{2}\)
Mà x -2012 = \(-\dfrac{4025}{2}\Rightarrow x=2012-\dfrac{4025}{2}=-\dfrac{1}{2}\)
Vậy GTNN của P = \(\dfrac{4025^2}{2}\) khi x = \(-\dfrac{1}{2}\)
Đặt t = x - 2012
=> P = t^2 + ( t + 4025 )^2
P = t^2 + t^2 + 8050t + 4025^2
P = 2t^2 + 8050t + 4025^2
= 2 ( t^2 + 4025t ) + 4025^2
= 2 ( t^2 + 2.t.4025/2 + 4025^2/4 ) - 4025^2/2 + 4025^2
= 2 ( t + 4025/2 )^2 + 4025^2 - 4025^2/2
Vậy GTNN là 4025^2 - 4025^2/2 khi t + 4025/2 = 0 => t = -4025/2
=> x - 2012 = -4025/2 => x = ...
\(A=\frac{x^2-3}{\left(x-2\right)^2}=\frac{-3x^2+12x-12+4x^2-12x+9}{\left(x-2\right)^2}\)
\(=-3+\frac{4x^2-12x+9}{\left(x-2\right)^2}=-3+\frac{\left(2x-3\right)^2}{\left(x-2\right)^2}\ge-3\)
Vậy GTNN là - 3 đạt được khi x = 1,5
\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)=\left[x\left(x+3\right)\right]\left[\left(x+1\right)\left(x+2\right)\right]\)
\(=\left(x^2+3x\right)\left(x^2+3x+2\right)=\left(x^2+3x+1-1\right)\left(x^2+3x+1+1\right)\)
\(=\left(x^2+3x+1\right)^2-1\ge-1\) với moi x
Dấu "=" xảy ra <=> x2+3x+1=0
<=>\(\left(x+\frac{3}{2}\right)^2-\frac{5}{4}=0< =>\left(x+\frac{3}{2}\right)^2-\left(\frac{\sqrt{5}}{2}\right)^2=0\)
\(< =>\left(x+\frac{3}{2}-\frac{\sqrt{5}}{2}\right)\left(x+\frac{3}{2}+\frac{\sqrt{5}}{2}\right)=0\)
<=>..... (x có 2 nghiệm)
Vậy Min của...=-1 khi.............
Đặt P = x - 2012
=> P = t^2 + ( t + 4025 )^2
P = t^2 + t^2 + 8050t + 4025^2
P = 2t^2 + 8050t + 4025^2
= 2 ( t^2 + 4025t ) + 4025^2
= 2 ( t^2 + 2.t.4025/2 + 4025^2/4 ) - 4025^2/2 + 4025^2
= 2 ( t + 4025/2 )^2 + 4025^2 - 4025^2/2
Vậy GTNN là 4025^2 - 4025^2/2 khi t + 4025/2 = 0 => t = -4025/2
=> x - 2012 = -4025/2 => x = ...