Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) áp dụng BĐT cô-si ta có:
\(y=\frac{x}{2}+\frac{18}{x}\ge2\sqrt{\frac{x}{2}.\frac{18}{x}}=2\sqrt{9}=6\)
Dấu "=" xảy ra khi:
\(\frac{x}{2}+\frac{18}{x}=6\)
\(\Leftrightarrow\frac{x^2}{2x}+\frac{36}{2x}=\frac{12x}{2x}\)
\(\Rightarrow x^2+36=12x\)
\(\Leftrightarrow\left(x-6\right)^2=0\)
\(\Leftrightarrow x=6\)
tương tự mấy câu tiếp theo
Bạn chú ý : Bài của bạn cần phải có điều kiện a,b > 0
\(\sqrt{\frac{a^2}{b}}+\sqrt{\frac{b^2}{a}}=\frac{\left|a\right|}{\sqrt{b}}+\frac{\left|b\right|}{\sqrt{a}}=\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}\)(1)
Ta xét : \(A=\left(\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}\right)\left(\sqrt{a}+\sqrt{b}\right)=\left(\frac{a\sqrt{a}}{\sqrt{b}}+\frac{b\sqrt{b}}{\sqrt{a}}\right)+\left(a+b\right)\)
Áp dụng bất đẳng thức Cauchy được : \(\frac{a\sqrt{a}}{\sqrt{b}}+\frac{b\sqrt{b}}{\sqrt{a}}\ge2\sqrt{\frac{ab\sqrt{ab}}{\sqrt{ab}}}=2\sqrt{ab}\)
\(\Rightarrow A\ge a+b+2\sqrt{ab}=\left(\sqrt{a}+\sqrt{b}\right)^2\)
\(\Rightarrow\left(\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}\right)\left(\sqrt{a}+\sqrt{b}\right)\ge\left(\sqrt{a}+\sqrt{b}\right)^2\)
\(\Leftrightarrow\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}\ge\sqrt{a}+\sqrt{b}\) (2)
Từ (1) và (2) ta có đpcm
\(A=\dfrac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\dfrac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}+\dfrac{\sqrt{x}+3}{3-\sqrt{x}}\)
\(=\dfrac{x\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}-\dfrac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}-\dfrac{\sqrt{x}+3}{\sqrt{x}-3}\)
\(=\dfrac{\left(x\sqrt{x}-3\right)-2\left(\sqrt{x}-3\right)^2-\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\left(x\sqrt{x}-3\right)-\left(2x-12\sqrt{x}+18\right)-\left(x+4\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x\sqrt{x}-3x+8\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\left(\sqrt{x}-3\right)\left(x+8\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}=\dfrac{x+8}{\sqrt{x}+1}\)
~ ~ ~
\(\dfrac{x+8}{\sqrt{x}+1}=\dfrac{\left(4\sqrt{x}+4\right)+\left(x-4\sqrt{x}+4\right)}{\sqrt{x}+1}\)
\(=4+\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}+1}\ge4\)
Dấu "=" xảy ra khi x = 4
1/ Đặt \(\hept{\begin{cases}\sqrt{x-2013}=a\\\sqrt{x-2014}=b\end{cases}}\)
Thì ta có:
\(\frac{\sqrt{x-2013}}{x+2}+\frac{\sqrt{x-2014}}{x}=\frac{a}{a^2+2015}+\frac{b}{b^2+2014}\)
\(\le\frac{a}{2a\sqrt{2015}}+\frac{b}{2b\sqrt{2014}}=\frac{1}{2\sqrt{2015}}+\frac{1}{2\sqrt{2014}}\)
2/ \(\frac{x}{2x+y+z}+\frac{y}{x+2y+z}+\frac{z}{x+y+2z}\)
\(\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{y+x}+\frac{y}{y+z}+\frac{z}{z+x}+\frac{z}{z+y}\right)\)
\(=\frac{3}{4}\)
\(A=\frac{\left(x+4\right)-\sqrt{x}}{2\sqrt{x}}\ge\frac{2\sqrt{4x}-\sqrt{x}}{2\sqrt{x}}=\frac{3\sqrt{x}}{2\sqrt{x}}=\frac{3}{2}\)
\(A_{min}=\frac{3}{2}\) khi \(x=4\)
\(B=\frac{x+3+2\sqrt{x}}{\sqrt{x}}\ge\frac{2\sqrt{3x}+2\sqrt{x}}{\sqrt{x}}=2\sqrt{3}+2\)
\(B_{min}=2\sqrt{3}+2\) khi \(x=3\)
Xem lại đề câu C, với \(x>0\) thì \(C_{min}\) ko tồn tại
Bạn ơi cho mình hỏi tại sao \(\frac{\left(x+4\right)-\sqrt{x}}{2\sqrt{x}}\)lại lớn hơn hoặc bằng \(\frac{2\sqrt{4x}-\sqrt{x}}{2\sqrt{x}}\)vậy ạ?
Áp dụng BĐT Cô - si cho hai số không âm ta được
\(x^2+3+\frac{1}{x^2+3}\ge2\sqrt{\left(x^2+3\right)\cdot\frac{1}{x^2+3}}=2\sqrt{1}=2\)
Dấu = xảy ra \(\Leftrightarrow x^2+3=\frac{1}{x^2+3}\)
\(\Leftrightarrow\left(x^2+3\right)^2=1\)
\(\Leftrightarrow x^4+6x^2+9=1\)
\(\Leftrightarrow x^4+6x^2+8=0\)
\(\Leftrightarrow\left(x^2+2\right)\left(x^2+4\right)=0\)
\(\Leftrightarrow\left(x^2+2\right)=0\) hoặc \(\left(x^2+4\right)=0\)
\(\Leftrightarrow x^2=-2\) hoặc \(x^2=-4\) (vô nghiệm) (Sai đề r hay s á b, mik nghĩ là \(x^2-3\)ms đúng)
Vậy GTNN của M là 2