Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\right)\left(x^4+\frac{1-x^4}{1+x^2}\right)\)
\(=\frac{\left(x^2-1\right)\left(x^2+1\right)-x^4+x^2-1}{\left(x^4-x^2+1\right)\left(x^2+1\right)}\left(x^4+1-x^2\right)\)
\(=\frac{x^4-1-x^4+x^2-1}{x^2+1}\)
\(=\frac{x^2+2}{x^2+1}\)
b, biển đổi \(M=1-\frac{3}{x^2+1}\)
M bé nhất khi \(\frac{3}{x^2+1}\)lớn nhất
\(\Leftrightarrow x^2+1\)bé nhất \(\Leftrightarrow x^2=0\)
\(\Rightarrow x=0\Rightarrow\)M bé nhất =-2
1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)
vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)
dấu = xảy ra khi x-2018=0
=> x=2018
Vậy Min A=\(\frac{2017}{2017}\)khi x=2018
2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)
\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)
để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất
mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)
dấu = xảy ra khi \(x+\frac{3}{2}=0\)
=> x=\(-\frac{3}{2}\)
Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)
3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)
để M lớn nhất => x2+4 nhỏ nhất
mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)
dấu = xảy ra khi x2 =0
=> x=0
Vậy Max M\(=\frac{7}{2}\)khi x=0
ps: bài này khá dài, sai sót bỏ qua =))
\(B=\frac{1}{-m^2+2m+6}=\frac{1}{7-\left(m^2-2m+1\right)}=\frac{1}{7-\left(m-1\right)^2}\)
B có GTNN khi \(7-\left(m-1\right)^2\) có GTLN
Mà \(7-\left(m-1\right)^2\le7\forall m\)
Dấu = xảy ra khi m=1
Vậy min B=1/7 <=> m=1
Mình ko chắc lắm :
Áp dụng BĐT AM - GM ta có :
\(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)
\(=\frac{x^2y^2+1}{y^2}.\frac{x^2y^2+1}{x^2}=\frac{x^4y^4+2x^2y^2+1}{x^2y^2}\)
\(=x^2y^2+\frac{1}{x^2y^2}+2=x^2y^2+\frac{1}{256x^2y^2}+\frac{255}{256x^2y^2}+2\)
\(\ge2\sqrt{x^2y^2.\frac{1}{256x^2y^2}}+\frac{255}{256.\left(xy\right)^2}+2\)
\(\ge2.\frac{1}{16}+\frac{255}{256.\left(\frac{\left(x+y\right)^2}{4}\right)^2}+2\)
\(=\frac{1}{8}+\frac{255}{256.\left(\frac{1}{4}\right)^2}+2=\frac{289}{16}\)
Khi \(x=y=\frac{1}{2}\)
Chúc bạn học tốt !!!
Câu này đề bài có vấn đề nhé.
1. x , y,z > 1 thì không thể có x+ y +z =1.
2. Gỉa sử x, y, x > 0. Ví dụ lấy \(x=0,99999999\), \(z=5.10^{-9}\),\(y=5.10^{-9}\)
ta thấy M sẽ rất nhỏ. Khi x càng dần 1, z,y càng dần tới 0 thì M càng nhỏ, nên ko tìm GTNN của M đc.
FZ xem lại em nhé.
\(M=\frac{x^2+x+1}{x^2+2x+1}=\frac{\left(x+1\right)^2-x}{\left(x+1\right)^2}\)
Đặt y=x+1 =>y-1=x ta được:
\(M=\frac{y^2-y+1}{y^2}=\frac{\frac{y^2-y+1}{y^2}}{\frac{y^2}{y^2}}=1-\frac{1}{y}+\frac{1}{y^2}\)
\(=\left(\frac{1}{2}-\frac{1}{y}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy GTNN của M là 3/4 tại 1/2-1/y=0
=>y=2
=>x=y-1=1
M=x^2-2/x^2+1
=x^2+1-3/x^2+1
=1- 3/x^2+1
M đạt gtnn khi 3/x^2+1 đạt gtln
=>x^2+1=1
=>x^2=0
=>x=0.
Khi đó M=1- 3/1+1 = 1-3+1 = -2+1 = -1
Vậy Mmin=-1 khi x=0