K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2024

`M = 6 + 4 . |x^2 + 1| `

Do `x^2 + 1 > 0`

`=> |x^2 + 1| = x^2 + 1`

`M = 6 + 4 . (x^2 + 1) `

`= 6 + 4x^2 + 4`

`= 4x^2 + 10`

Để M đạt GTNN thì `x^2` đạt GTNN

Mà `x^2 >= 0 `

Dấu = xảy ra khi: 

`x = 0`

Khi đó `M = 10`

Vậy GTNN của M là `10` khi `x = 0`

6 tháng 12 2024

bfvnvjcvgvmggbvfdjbvfkfnb

 

16 tháng 4 2019

\(M=\left|x-\frac{1}{2}\right|+\left|x-1\right|+\left|x+\frac{1}{4}\right|\)

\(+)\left|x-1\right|+\left|x+\frac{1}{4}\right|=\left|1-x\right|+\left|x+\frac{1}{4}\right|\ge\left|1-x+x+\frac{1}{4}\right|=\frac{5}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\left(1-x\right)\left(x+\frac{1}{4}\right)\ge0\Leftrightarrow-\frac{1}{4}\le x\le1\)

\(+)\left|x-\frac{1}{2}\right|\ge0\).Dấu '=" xảy ra \(\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)

\(\Rightarrow M\ge\frac{5}{2}+0=\frac{5}{2}\)

\(\Rightarrow M_{min}=\frac{5}{2}\Leftrightarrow\hept{\begin{cases}-\frac{1}{4}\le x\le1\\x=\frac{1}{2}\end{cases}\Rightarrow x=\frac{1}{2}}\)

16 tháng 4 2019

Cảm ơn các bạn nhiều nha

a) dễ tự làm

b) A(x) có bậc 6

      hệ số: -1 ; 5 ; 6 ; 9 ; 4 ; 3

B(x) có bậc 6

hệ số: 2 ; -5 ; 3 ; 4 ; 7

c) bó tay

d) cx bó tay

30 tháng 10 2021

tìm gtnn củaa, A=|2=4x|-6b, 1-4/x^2+1GIÚP MIK VS MIK CẢM ƠN   - Hoc24

4 tháng 2 2019

Trước hết ta chứng minh bổ đề: \(|a|+|b|\ge|a+b|.\left(1\right)\)

CM: \(\left(1\right)\Leftrightarrow\left(|a|+|b|\right)^2\ge\left(|a+b\right)^2\)

                  \(\Leftrightarrow a^2+b^2+2|ab|\ge a^2+b^2+2ab\)

                  \(\Leftrightarrow2|ab|\ge2ab\)

                  \(\Leftrightarrow\left|ab\right|\ge ab\)(điều này đúng do tính chất của giá trị tuyệt đối).

Vậy ta có đpcm. Dấu bằng xảy ra \(\Leftrightarrow ab\ge0.\)

a) A = \(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|=\left|x-1\right|+\left|3-x\right|+\left|x-2\right|.\)

Ta thấy rằng \(\left|x-2\right|\ge0\)với mọi x.

Áp dụng bổ đề trên ta có:

\(A\ge\left|x-1+3-x\right|+0=\left|2\right|+0=2+0=2.\)

Dấu bằng xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)\left(3-x\right)\ge0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}1\le x\le3\\x=2\end{cases}}\Leftrightarrow x=2.\)

Vậy GTNN của A bằng 2 khi x = 2.

b) Áp dụng bổ đề trên ta có:\(B=\left|x-4\right|+\left|7-x\right|+\left|x-5\right|+\left|6-x\right|\ge\left|x-4+7-x\right|+\left|x-5+6-x\right|=\left|3\right|+\left|1\right|=3+1=4.\)

Dấu bằng xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-4\right)\left(7-x\right)\ge0\\\left(x-5\right)\left(6-x\right)\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}4\le x\le7\\5\le x\le6\end{cases}\Leftrightarrow}5\le x\le6}\)(vì với mọi x nằm giữa 5 và 6 thì cũng nằm giữa 4 và 7).

Vậy GTNN của B bằng 4 khi \(5\le x\le6.\)

4 tháng 2 2019

a;\(A=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\)

\(\Rightarrow A=\left|x-1\right|+\left|x-2\right|+\left|3-x\right|\)

Ta có +) \(\left|x+1\right|+\left|3-x\right|\ge\left|x+1+3-x\right|=4\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)\left(3-x\right)\ge0\Leftrightarrow1\le x\le3\)

+)\(\left|x-2\right|\ge0\)Dấu "=" xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)

\(\Rightarrow A=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\ge2\)

\(\Rightarrow A_{min}=2\Leftrightarrow\hept{\begin{cases}1\le x\le3\\x=2\end{cases}\Leftrightarrow x=2}\)

b;\(B=\left|x-4\right|+\left|x-5\right|+\left|x-6\right|+\left|x-7\right|\)

\(\Rightarrow B=\left|x-4\right|+\left|x-5\right|+\left|6-x\right|+\left|7-x\right|\)

Ta có +) \(\left|x-4\right|+\left|7-x\right|\ge\left|x-4+7-x\right|=3\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-4\right)\left(7-x\right)\ge0\Leftrightarrow4\le x\le7\)

+) \(\left|x-5\right|+\left|6-x\right|\ge\left|x-5+6-x\right|=1\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-5\right)\left(6-x\right)\ge0\Leftrightarrow5\le x\le6\)

\(\Rightarrow B=\left|x-4\right|+\left|x-5\right|+\left|x-6\right|+\left|x-7\right|\ge4\)

\(\Rightarrow B_{min}=4\Leftrightarrow\hept{\begin{cases}4\le x\le7\\5\le x\le6\end{cases}\Leftrightarrow5\le x\le6}\)

1 tháng 8 2017

a) vì \(\left|x+\frac{15}{19}\right|\ge0\text{ }\forall\text{ }x\)

\(\Rightarrow\)Mmin  \(\Leftrightarrow\)M = 0 \(\Rightarrow\)x = \(\frac{-15}{19}\)

b) vì \(\left|x-\frac{4}{7}\right|\ge0\text{ }\forall\text{ }x\)

\(\Rightarrow\)\(\left|x-\frac{4}{7}\right|-\frac{1}{2}\ge\frac{-1}{2}\)

\(\Rightarrow\)Nmin \(\Leftrightarrow\)N = \(\frac{-1}{2}\)\(\Rightarrow\)\(x=\frac{4}{7}\)

2 tháng 8 2017

không cần SKT_NTT trả lời

3 tháng 8 2017

a) vì | x + 15/19 | \(\ge\)\(\forall\)x

\(\Rightarrow\)Mmin \(\Leftrightarrow\)M = 0 \(\Rightarrow\)x = -15/19

b) vì | x - 4/7 | \(\ge\)\(\forall\)x

\(\Rightarrow\)|x  - 4/7 | - 1/2 \(\ge\)-1/2

\(\Rightarrow\)Nmin \(\Leftrightarrow\)N = -1/2 \(\Rightarrow\)x = 4/7

9 tháng 6 2016

|x-1/2|+3/4 nhé

 

9 tháng 6 2016

a) Tính M khi x - 1 là sao bạn ?