
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) \(M=x^2-8x+2018=x^2-8x+16+2002=\left(x-4\right)^2+2002\)
\(\left(x-4\right)^2\ge0\forall x\Rightarrow\left(x-4\right)^2+2002\ge2002\)
Dấu " = " xảy ra <=> x - 4 = 0 => x = 4
Vậy MMin = 2002 khi x = 4
b) \(N=4x^2-12x+2019=4x^2-12x+9+2010=\left(2x-3\right)^2+2010\)
\(\left(2x-3\right)^2\ge0\forall x\Rightarrow\left(2x-3\right)^2+2010\ge2010\)
Dấu " = " xảy ra <=> 2x - 3 = 0 => x = 3/2
Vậy NMin = 2010 khi x = 3/2
c) \(P=x^2-x+2016=x^2-x+\frac{1}{4}+\frac{8063}{4}=\left(x-\frac{1}{2}\right)^2+\frac{8063}{4}\)
\(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{8063}{4}\ge\frac{8063}{4}\)
Dấu " = " xảy ra <=> x - 1/2 = 0 => x = 1/2
Vậy PMin = 8063/4 khi x = 1/2
d) \(Q=x^2-2x+y^2+4y+2020\)
\(Q=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+2015\)
\(Q=\left(x-1\right)^2+\left(y+2\right)^2+2015\)
\(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{cases}\Rightarrow}\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2+2015\ge2015\)
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-1=0\\y+2=0\end{cases}\Rightarrow}\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
Vậy QMin = 2015 khi x = 1 ; y = -2


a ) \(M=a^3+b^3+ab\) biết \(a+b=1\)
\(M=\left(a+b\right)\left(a^2-ab+b^2\right)+ab\)
\(M=a^2-ab+b^2+ab\)
\(M=a^2+b^2\)
Ta có : \(\left(a-b\right)^2\ge0\)
\(\Rightarrow a^2+b^2\ge2ab\)
\(\Rightarrow2\left(a^2+b^2\right)\ge a^2+2ab+b^2=\left(a+b\right)^2=1\)
\(\Rightarrow a^2+b^2\ge\frac{1}{2}\)
Vậy \(Min_M=\frac{1}{2}\Leftrightarrow a=b=\frac{1}{2}\).
b ) \(N=\left(x^2+x\right)\left(x^2+x-4\right)=\left[\left(x^2+x-2\right)+2\right]\left[\left(x^2+x-2\right)-2\right]=\left(x^2+x-2\right)^2-4\ge-4\)
Vậy \(Min_N=-4\)\(\Leftrightarrow x^2+x-2=0\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=-2\end{array}\right.\).

\(A=\dfrac{1-\left|8x-\dfrac{2}{3}\right|}{2}\)
\(\left|8x-\dfrac{2}{3}\right|\ge0\forall x\)
\(\Rightarrow1-\left|8x-\dfrac{2}{3}\right|\le1\)
\(MAX_A\Rightarrow MAX_{1-\left|8x-\dfrac{2}{3}\right|}\)
\(MAX_{1-\left|8x-\dfrac{2}{3}\right|}=1\)
Xảy ra khi và chỉ khi:
\(\left|8x-\dfrac{2}{3}\right|=0\Rightarrow8x=\dfrac{2}{3}\Rightarrow x=\dfrac{1}{12}\)
\(\Rightarrow MAX_A=\dfrac{1}{12}\) khi \(x=\dfrac{1}{12}\)
\(B=5-\left|\dfrac{3}{5}-2x\right|+2\)
\(B=7-\left|\dfrac{3}{5}-2x\right|\)
\(\left|\dfrac{3}{5}-2x\right|\ge0\forall x\)
\(\Rightarrow7-\left|\dfrac{3}{5}-2x\right|\le7\)
(ko tìm được MIN đâu nhé)
Dấu "=" xảy ra khi:
\(\left|\dfrac{3}{5}-2x\right|=0\Rightarrow\dfrac{3}{5}=2x\Rightarrow x=\dfrac{3}{10}\)
\(\Rightarrow MAX_B=7\) khi \(x=\dfrac{3}{10}\)
a) ta có : \(\left|8x-\dfrac{2}{3}\right|\ge0\Rightarrow1-\left|8x-\dfrac{2}{3}\right|\le1\Rightarrow\dfrac{1-\left|8x-\dfrac{2}{3}\right|}{2}\le\dfrac{1}{2}\) Vậy GTLN của A=\(\dfrac{1}{2}\) khi và chỉ khi x=\(\dfrac{1}{12}\)
b) Giải tương tự câu a

1,
Có \(\sqrt{x}\ge0\)với mọi x
=> 2 + \(\sqrt{x}\ge\)2 với mọi x
=> A \(\ge\)2 với mọi x
Dấu "=" xảy ra <=> \(\sqrt{x}=0\)<=> x = 0
KL: Amin = 2 <=> x = 0
2, (câu này phải là GTLN chứ nhỉ)
Có \(\sqrt{x-1}\ge0\)với mọi x
=> \(2.\sqrt{x-1}\ge0\)với mọi x
=> \(5-2.\sqrt{x-1}\le5\)với mọi x
=> B \(\le\)5 với mọi x
Dấu "=" xảy ra <=> \(\sqrt{x-1}=0\)<=> x - 1 = 0 <=> x = 1
KL Bmax = 5 <=> x = 1
\(\sqrt{x}\ge0\)
\(\Rightarrow A=2+\sqrt{x}\ge2+0\ge2\)
\(MinA=2\Leftrightarrow\sqrt{x}=0\Rightarrow x=0\)
2) \(5-2\sqrt{x-1}\le5\)
\(MinA=5\Leftrightarrow x-1=0\Rightarrow x=1\)

a) (Nếu là tính M khi x = 1)
\(M=\left|1-\frac{1}{2}\right|+\frac{3}{4}=\left|\frac{1}{2}\right|+\frac{3}{4}=\frac{1}{2}+\frac{3}{4}=\frac{5}{4}\)
b) Ta có : \(\left|x-\frac{1}{2}\right|\ge0\)
=> \(\left|x-\frac{1}{2}\right|+\frac{3}{4}\ge\frac{3}{4}\)
GTNN của M là \(\frac{3}{4}\) <=> \(\left|x-\frac{1}{2}\right|=0\) <=> \(x=\frac{1}{2}\)

a) Khi x = 1 thì \(M=\left|1-\frac{1}{2}\right|+\frac{3}{4}=\left|\frac{1}{2}\right|+\frac{3}{4}=\frac{1}{2}+\frac{3}{4}=\frac{5}{4}\)
b) Ta có \(\left|x-\frac{1}{2}\right|\ge0\)
\(\Rightarrow\left|x-\frac{1}{2}\right|\) \(+\frac{3}{4}\ge\frac{3}{4}\)
Vậy GTNN của M là \(\frac{3}{4}\) <=> \(\left|x-\frac{1}{2}\right|=0\) <=> x = \(\frac{1}{2}\)
A = 2\(x^2\) - 8\(x\) + 1
A = 2(\(x^2-4x+4\)) - 7
A = 2.\(\left(x-2\right)^2\) - 7
Vì \(\left(x-2\right)^2\) ≥ 0 ∀\(x\)
(\(x-2\))\(^2\) - 7 ≥ - 7 ∀\(x\) dấu = xảy ra khi \(x-2=0\rArr x=2\)
Kết luận giá trị nhỏ nhất của biểu thức A = \(2x^2-8x+1\) là -7 xảy ra khi \(x=2\)