K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2021

M = |3x - 7| + |3x + 2| + 2021 = |7 - 3x| + |3x + 2| + 2021 \(\ge\) |7 - 3x + 3x + 2| + 2021 = 9 + 2021 = 2030 (Tính chất giá trị tuyệt đối)

Dấu "=" xảy ra \(\Leftrightarrow\) 7 - 3x = 3x + 2 \(\Leftrightarrow\) 6x = 5 \(\Leftrightarrow\) x = \(\dfrac{5}{6}\)

Vậy MinM = 2030 \(\Leftrightarrow\) x = \(\dfrac{5}{6}\)

Chúc bn học tốt!

AH
Akai Haruma
Giáo viên
31 tháng 3 2021

Đối với BDT dạng $|a|+|b|\geq |a+b|$ thì dấu bằng xảy ra khi $ab\geq 0$ chứ không phải $a=b$ bạn nhé!

AH
Akai Haruma
Giáo viên
28 tháng 5 2019

Lời giải:

PT \(\Leftrightarrow 3x^2+2x(2y-1)+(4y^2+6y+2021-T)=0\)

Coi đây là PT bậc 2 ẩn $x$.

Vì dấu "=" tồn tại nên PT trên luôn có nghiệm

\(\Rightarrow \Delta'=(2y-1)^2-3(4y^2+6y+2021-T)\geq 0\)

\(\Leftrightarrow -8y^2-22y-6062+3T\geq 0\)

\(\Leftrightarrow 3T\geq 8y^2+22y+6062\)

Mà: \(8y^2+22y+6062=8(y+\frac{11}{8})^2+\frac{48375}{8}\geq \frac{48375}{8}\)

\(\Rightarrow T\geq \frac{48375}{8}:3=\frac{16125}{8}\) (đây chính là GTNN của T)

\(\Leftrightarrow \)

9 tháng 9 2017

cho 3x + y =1. a> Tìm GTNN M= 3x^2 + y^2 . b> tìm GTLN M= xy

Làm đề ni dùng mk đề trên viết sai 1 chút..... xl ạ

29 tháng 7 2015

\(M=3x^2+4x+1=3.\left(x^2+\frac{4}{3}x+\frac{1}{3}\right)\)

\(=3.\left(x^2+2.x.\frac{2}{3}+\frac{4}{9}-\frac{1}{9}\right)=3.\left(x^2+2.x.\frac{2}{3}+\frac{4}{9}\right)-\frac{1}{3}\)

\(=3.\left(x+\frac{2}{3}\right)^2-\frac{1}{3}\)

\(\text{Vì }3.\left(x+\frac{2}{3}\right)^2\ge0\text{ nên }3.\left(x+\frac{2}{3}\right)^2-\frac{1}{3}\ge-\frac{1}{3}\)

\(\text{Dấu "=" xảy ra khi : }x+\frac{2}{3}=0\)

                                                  \(\Leftrightarrow x=\frac{-2}{3}\)

\(\text{Vậy GTNN của M là }\frac{-1}{3}\text{ tại }x=\frac{-2}{3}\)

9 tháng 9 2017

\(3x+y=1\Rightarrow y=1-3x\) (1)

a ) Thay (1) vào M ta được :

\(M=3x^2+\left(1-3x\right)^2=3x^2+9x^2-6x+1=12x^2-6x+1\)

\(=\left(\sqrt{12}x\right)^2-2\sqrt{12}x.\frac{3}{\sqrt{12}}+\frac{9}{12}+\frac{1}{4}=\left(\sqrt{12}x-\frac{3}{\sqrt{12}}\right)^2+\frac{1}{4}\ge\frac{1}{4}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{4}\)

Vậy \(M_{min}=\frac{1}{4}\) tại \(x=y=\frac{1}{4}\)

b ) Thay (1) vào N ta được :

\(N=x\left(1-3x\right)=x-3x^2=-\left(\sqrt{3}x\right)^2+2.\sqrt{3}x.\frac{1}{2\sqrt{3}}-\frac{1}{12}+\frac{1}{12}\)

\(=-\left(\sqrt{3}x-2.\sqrt{3}x.\frac{1}{2\sqrt{3}}+\frac{1}{12}\right)+\frac{1}{12}=-\left(\sqrt{3}x-\frac{1}{2\sqrt{3}}\right)^2+\frac{1}{12}\le\frac{1}{12}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{6}\\y=\frac{1}{2}\end{cases}}\)

Vậy \(N_{max}=\frac{1}{12}\) tại \(x=\frac{1}{6};y=\frac{1}{2}\)

11 tháng 11 2018

Ta có:

\(\hept{\begin{cases}\left|x+2\right|\ge0\forall x\\\left|3x-5\right|\ge0\forall x\\\left|4x+7\right|\ge0\forall x\end{cases}}\\ \Rightarrow\left|x+2\right|+\left|3x-5\right|+\left|4x+7\right|\ge0\\ A\ge0\\Min_A=0 \)

NV
2 tháng 9 2021

\(P\le\sqrt{2\left(3x-5+7-3x\right)}=2\)

\(P_{max}=2\) khi \(3x-5=7-3x\Rightarrow x=2\)

\(A=2\left(x-1\right)+\dfrac{9}{x-1}+2\ge2\sqrt{\dfrac{18\left(x-1\right)}{x-1}}+2=6\sqrt{2}+2\)

\(A_{min}=6\sqrt{2}+2\) khi \(x=\dfrac{2+3\sqrt{2}}{2}\)