Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{1^2}{x}+\frac{\left(\sqrt{2}\right)^2}{y}+\frac{2^2}{z}\ge\frac{\left(1+\sqrt{2}+2\right)^2}{x+y+z}=\frac{\left(3+\sqrt{2}\right)^2}{1}=\left(3+\sqrt{2}\right)^2\)
Dấu "=" xảy ra <=> \(\frac{1}{x}=\frac{\sqrt{2}}{y}=\frac{2}{z}=\frac{1+\sqrt{2}+2}{x+y+z}=\frac{3+\sqrt{2}}{1}\)
<=> \(x=\frac{1}{3+\sqrt{2}};y=\frac{\sqrt{2}}{3+\sqrt{2}};z=\frac{2}{3+\sqrt{2}}\).
`1. P = x/(sqrt x-1)`
`= (x-1+1)/(sqrtx-1)`
`= ((sqrt x+1)(sqrt x-1))/(sqrt x-1) +1/(sqrt x-1)`
`= sqrt x+1 + 1/(sqrt x-1)`
`= sqrtx-1 + 1/(sqrt x-1) + 2 >= 4`.
ĐTXR `<=> (sqrtx-1)^2 = 1`.
`<=> x =4` hoặc `x = 0 ( ktm)`.
Vậy Min A `= 4 <=> x= 4`.
1) \(P=\dfrac{x}{\sqrt{x}-1}=\dfrac{(x-\sqrt{x})+(\sqrt{x}-1)+1}{\sqrt{x}-1}=\sqrt{x}+\dfrac{1}{\sqrt{x}-1}+1\)
\(=\sqrt{x}-1+\dfrac{1}{\sqrt{x}-1}+2\)
Với x>1\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x}-1>0\\\dfrac{1}{\sqrt{x}-1}>0\end{matrix}\right.\)
Áp dụng BĐT AM-GM cho 2 số dương \(\sqrt{x}-1\) và \(\dfrac{1}{\sqrt{x}-1}\), ta có:
\(\sqrt{x}-1+\dfrac{1}{\sqrt{x}-1}\ge2\sqrt{(\sqrt{x}-1).\dfrac{1}{\sqrt{x}-1}}=2\)
\(\Rightarrow P\ge2+2=4\)
Dấu = xảy ra khi: \(\sqrt{x}-1=1\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\left(tm\right)\)
KL;....
\(a,\dfrac{x^2+x+2}{\sqrt{x^2+x+1}}=\dfrac{x^2+x+1+1}{\sqrt{x^2+x+1}}=\sqrt{x^2+x+1}+\dfrac{1}{\sqrt{x^2+x+1}}\left(1\right)\)
Áp dụng BĐT cosi: \(\left(1\right)\ge2\sqrt{\sqrt{x^2+x+1}\cdot\dfrac{1}{\sqrt{x^2+x+1}}}=2\)
Dấu \("="\Leftrightarrow x^2+x+1=1\Leftrightarrow x^2+x=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Ta có :
\(y=\frac{2}{1-x}+\frac{1}{x}\)
\(\Rightarrow y=\frac{2\left(1-x\right)+2x}{1-x}+\frac{1-x+x}{x}\)
\(\Rightarrow y=2+\frac{2x}{1-x}+\frac{1-x}{x}+1\)
\(\Rightarrow y=\frac{2x}{1-x}+\frac{1-x}{x}+3\)
Vì \(0< x< 1\Rightarrow\hept{\begin{cases}\frac{2x}{1-x}>0\\\frac{1}{x}>0\end{cases}}\)
Áp dụng BĐT Cô si cho 2 số dương , ta có :
\(\Rightarrow y=\frac{2x}{1-x}+\frac{1-x}{x}+3\ge2\sqrt{\frac{2x}{1-x}.\frac{1-x}{x}}+3=2\sqrt{2}+3\)
Dấu "=" xảy ra khi \(\frac{2x}{1-x}=\frac{1-x}{x}\Leftrightarrow\left(1-x\right)^2=2x^2\Leftrightarrow x^2+2x-1=0\Leftrightarrow\left(x+1\right)^2=2\Rightarrow x=\sqrt{2}-1\)
( vì\(0< x< 1\) )
Vậy \(Min_y=2\sqrt{2}+3\) khi \(x=\sqrt{2}-1\)
\(y=\frac{2}{1-x}+\frac{1}{x}\ge\frac{\left(\sqrt{2}+1\right)^2}{1-x+x}=3+2\sqrt{2}\)
Dấu = xảy ra khi
\(\frac{\sqrt{2}}{1-x}=\frac{1}{x}\)
\(\Leftrightarrow x=\frac{1}{1+\sqrt{2}}=\sqrt{2}-1\)
Câu trên mình thấy sai sai vì nếu x càng lớn thì A càng nhỏ , bạn xem lại đề nhé
Câu 2
\(\frac{3}{2}x+\frac{6}{x}\ge6\); \(\frac{1}{2}y+\frac{8}{y}\ge4\)
\(\frac{3}{2}\left(x+y\right)\ge\frac{3}{2}.6=9\)
Cộng các bĐT trên
=> \(3x+2y+\frac{6}{x}+\frac{8}{y}\ge9+6+4=19\)
MinP=19 khi x=2;y=4
2)\(\frac{x+y}{xy}\ge\frac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)
theo yêu cầu của bạn thì đến đâ mk làm theo cách này
ÁP Dụng cô si ta có:\(x+y\ge2\sqrt{xy}\)\(\Rightarrow\left(x+y\right)^2\ge4xy\)(luôn đúng)\(\Rightarrowđpcm\)
cách 2
\(\left(x+y\right)^2\ge4xy\Leftrightarrow x^2+2xy+y^2\ge4xy\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)
\(\Rightarrowđpcm\)
Tính đạo hàm: \(\left(x^2\right)'=2x\)
\(\left(\frac{2}{x^3}\right)'=2\left(\frac{1}{x^3}\right)'=2\left(x^{-3}\right)'=2.\left(-3\right).x^{-4}=\frac{-6}{x^4}\)
\(y'=\left(x^2+\frac{2}{x^3}\right)'=\left(x^2\right)'+\left(\frac{2}{x^3}\right)'=2x-\frac{6}{x^4}=\frac{2x^5-6}{x^4}\)
\(y'=0\Leftrightarrow x=\sqrt[5]{3}\)
Lập bảng biến thiên ta có: \(Min\)\(y=y\left(\sqrt[5]{3}\right)\approx2,58640929\)