\(f\left(x\right)=\dfrac{4}{x}+\dfrac{9}{1-x}\) với
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2019

Áp dụng bất đẳng thức Svacxo, ta có:

\(f\left(x\right)=\dfrac{4}{x}+\dfrac{9}{1-x}=\dfrac{2^2}{x}+\dfrac{3^2}{1-x}\ge\dfrac{\left(2+3\right)^2}{x+1-x}=25\)

Vậy \(f\left(x\right)_{min}=25\Leftrightarrow\dfrac{2}{x}=\dfrac{3}{1-x}\Leftrightarrow x=\dfrac{2}{5}\)

NV
7 tháng 12 2018

\(P=\dfrac{4}{x}+1+\dfrac{9}{1-x}=\dfrac{4}{x}+25x+25\left(1-x\right)+\dfrac{9}{1-x}-24\)

\(\Rightarrow P\ge2\sqrt{\dfrac{4}{x}.25x}+2\sqrt{25\left(1-x\right).\dfrac{9}{1-x}}-24\)

\(\Rightarrow P\ge20+30-24=26\)

\(\Rightarrow P_{min}=26\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\dfrac{4}{x}=25x\\25\left(1-x\right)=\dfrac{9}{1-x}\end{matrix}\right.\) \(\Rightarrow x=\dfrac{2}{5}\)

7 tháng 4 2017

a) Hình a:


b)Hình b:
17 tháng 5 2017

\(y=\dfrac{4\left(x+1-1\right)}{x}+\dfrac{9\left(x+1-x\right)}{1-x}\)

\(=4+9+\dfrac{4\left(1-x\right)}{x}+9\dfrac{x}{1-x}\ge13+2\sqrt{4\dfrac{\left(1-x\right)}{x}.9\dfrac{x}{1-x}}=25\)

\(\Rightarrow y\ge25,\forall x\in\left(0;1\right)\)

Đẳng thức \(y=25\) xảy ra khi và chỉ khi

\(\left\{{}\begin{matrix}\dfrac{4\left(1-x\right)}{x}=\dfrac{9x}{1-x}=6\\x\in\left(0;1\right)\end{matrix}\right.\)

Hay \(x=\dfrac{2}{5}\)

Vậy giá trị nhỏ nhất của hàm số đã cho bằng 25 đặt tại \(x=\dfrac{2}{5}\)

31 tháng 1 2018

Đoạn đầu bạn đã biến đổi nhầm một chút nhé:

\(y=\dfrac{4}{x}+\dfrac{9}{1-x}=\dfrac{4\left(x+1-x\right)}{x}+\dfrac{9\left(1-x+x\right)}{1-x}=4+9+4.\dfrac{1-x}{x}+9.\dfrac{x}{1-x}\)

30 tháng 3 2017

a) \(\dfrac{2}{x+1}\) xác định với x≠-1, \(\sqrt{x+3}\) xác định với x ≥ -3

Tập xác định của y = là:

D = {x ∈ R/ x + 1 ≠ 0 và x + 3 ≥ 0} = [-3, +)\{-1}

Có thể viết cách khác: D = [-3, -1] ∪ (-1, +)

b) Tập xác định

D = {x ∈ R/ 2 -3x ≥ 0} ∩ {x ∈ R/ 1-2x ≥ 0}

= [-, 2323 ]∩(-, 1212) = (-, 1212)

c) Tập xác định là:

D = [1, +) ∪ (-,1) = R

28 tháng 4 2017

a) TXĐ: \(D=R\).
b) \(TXD=D=R\backslash\left\{4\right\}\)
c) Đkxđ: \(\left\{{}\begin{matrix}4x+1\ge0\\-2x+1\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{-1}{4}\\x\le\dfrac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\dfrac{-1}{4}\le x\le\dfrac{1}{2}\).
TXĐ: D = \(\left[\dfrac{-1}{4};\dfrac{1}{2}\right]\)

3 tháng 5 2017

a) Đkxđ: \(\left\{{}\begin{matrix}x+9\ge0\\x^2+8x-20\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-9\\\left\{{}\begin{matrix}x\ne2\\x\ne-10\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-9\\x\ne2\end{matrix}\right.\)
Txđ: D = [ - 9; 2) \(\cup\) \(\left(2;+\infty\right)\)
b) Đkxđ: \(\left\{{}\begin{matrix}2x+1\ne0\\x-3\ne0\end{matrix}\right.\Leftrightarrow\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{-1}{2}\\x\ne3\end{matrix}\right.\)
Txđ: \(D=R\backslash\left\{\dfrac{-1}{2};3\right\}\)
c) \(x^2+2x-5\ne0\Leftrightarrow\left\{{}\begin{matrix}x\ne-1+\sqrt{6}\\x\ne-1-\sqrt{6}\end{matrix}\right.\)
Txđ: \(D=R\backslash\left\{-1+\sqrt{6};-1-\sqrt{6}\right\}\)


a: TH1: x>=2

=>2x-4<=x+12

=>x<=16

=>2<=x<=16

TH2: x<2

=>4-2x<=x+12

=>-3x<=8

=>x>=-8/3

=>-8/3<=x<2

b: TH1: x>=1

BPT sẽ là \(\dfrac{x-1}{x+2}< 1\)

=>(x-1-x-2)/(x+2)<0

=>x+2<0

=>x<-2(loại)

TH2: x<1

BPT sẽ là \(\dfrac{1-x}{x+2}-1< 0\)

=>(1-x-x-2)/(x+2)<0

=>(-2x-1)/(x+2)<0

=>(2x+1)/(x+2)>0

=>x>-1/2 hoặc x<-2

=>-1/2<x<1 hoặc x<-2

3 tháng 12 2017

a,Áp dụng bất đẳng thức cô si cho 2 số dương x và\(\dfrac{3}{x}\)ta có

x+\(\dfrac{3}{x}\)>=2\(\sqrt{x.\dfrac{3}{x}}\)=2\(\sqrt{3}\)

dấu "=" xảy ra khi x=\(\dfrac{3}{x}\)

<=x=\(+-\sqrt{3}\)(loại vì x>=2)

vậy ko tìm gtnn nào

4 tháng 12 2017

a) \(x+\dfrac{3}{x}=\dfrac{1}{4}x+\dfrac{3}{4}x+\dfrac{3}{x}\ge\dfrac{1}{4}x+2\sqrt{\dfrac{3}{4}x.\dfrac{3}{x}}=\dfrac{1}{4}.2+3=\dfrac{7}{2}\)

Đẳng thức xảy ra khi x=2

Vậy GTNN là 7/2 khi x=2

b) Từ từ làm sau