Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
GTNN nghĩa là giá trị nhỏ nhất đó bạn. Bạn biết thì giải giúp nhé
1) Nếu x<-2 => -x+3-x-2=1 => -2x =0 => x =0 loại
Nếu -2</ x < 3 => -x+3 +x+2 =1 => 5=1 loại
Nếu x >/ 3 => x-3 + x+2 =1 => 2x =2 => x =1 loại
Vậy không có x nào thỏa mãn
2) C không có GTNN
D= /x -2 / + / 8 -x/ >/ /x-2+8 -x / = /6/ = 6
D min = 6 khi 2</ x </ 8
a) \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|=2007\)
Ta có: \(\left|x-3\right|\ge0\forall x\)
\(\Rightarrow\left(\left|x-3\right|+2\right)^2\ge\left(0+2\right)^2=2^2=4\)
Lại có: \(\left|y+3\right|\ge0\forall y\)
\(\Rightarrow\left(\left|x-3\right|+2\right)^2+\left|y+3\right|\ge4+0=4\)
\(\Rightarrow\left(\left|x-3\right|+2\right)^2+\left|y+3\right|+2007\ge4+2007=2011\)
\(\Rightarrow P_{MIN}=2011\)
Dấu "=" xảy ra khi \(\Leftrightarrow\orbr{\begin{cases}\left|x-3\right|=0\\\left|y+3\right|=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\y=-3\end{cases}}}\)
Vậy \(P_{MIN}=2011\) tại \(\orbr{\begin{cases}x=3\\y=-3\end{cases}}\)
1) \(D=\)/ \(x-2003\)/ + / \(x-1\)/
\(\Leftrightarrow D=\)/ x-2003/ + / 1-x /
-Áp dụng bất đẳng thức: / A / + / B / , dấu “=” xảy ra khi A.B \(\ge\) 0 :
Ta có: / x-2003 / + / 1-x / \(\ge\)/ x-2003+1-x / = -2002
hay \(D\ge-2002\)
- Dấu “=” xảy ra \(\Leftrightarrow\)\(\left(x-2003\right).\left(1-x\right)\ge0\)
\(\Rightarrow\left(x-2003\right).\left(x-1\right)\le0\)
\(\Rightarrow\hept{\begin{cases}x-2003\le0\\x-1\ge0\end{cases}}\)( Do x-1 \(\ge\)x-2003)
\(\Rightarrow\hept{\begin{cases}x\le2003\\x\ge1\end{cases}}\)\(\Rightarrow1\le x\le2003\)
Vậy GTNN của D= -2002 \(\Leftrightarrow1\le x\le2003\)
2) \(E=\left(x^2-9\right)^2\)+ / \(y-2\)/ \(-1\)
-Ta có: \(x^2\ge0\)\(\forall x\)
\(\Rightarrow x^2-9\ge-9\)\(\forall x\)
\(\Rightarrow\left(x^2-9\right)^2\ge81\)\(\forall x\)
-Lại có: / \(y-2\) /\(\ge0\)\(\forall y\)
\(\Rightarrow\left(x^2-9\right)^2+\)/ \(y-2\) / \(\ge81\). \(\forall x,y\)
\(\Rightarrow\left(x^2-9\right)^2+\)/ \(y-2\)/ \(-1\ge80\)
hay \(E\ge80\)
-Dấu “=” xảy ra khi: \(\hept{\begin{cases}\left(x^2-9\right)^2=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x^2-9=0\\y=2\end{cases}}\Rightarrow\hept{\begin{cases}x^2=9\\y=2\end{cases}}\Rightarrow\hept{\begin{cases}x=3,-3\\y=2\end{cases}}\)
Vậy GTNN của E= 80 khi x= 3, -3 ; y=2
\(D=\left|x-2003\right|+\left|x-1\right|=\left|x-2003\right|+\left|1-x\right|\)
Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) với \(ab\ge0\) ta được
\(D=\left|x-2003\right|+\left|1-x\right|\ge\left|x-2003+1-x\right|=\left|-2002\right|\) =2002 với (x-2003)(1-x)\(\ge\)0
=>Dmin=2002 khi (x-2003)(1-x)\(\ge\)0 <=> \(1\le x\le2003\)
Ta có : \(D=\left(\left|x-1\right|+\left|x-9\right|\right)+\left(\left|x-2\right|+\left|x-8\right|\right)+\left(\left|x-3\right|+\left|x-7\right|\right)+\left(\left|x-4\right|+\left|x-6\right|\right)+\left|x-5\right|\)
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) , đẳng thức xảy ra khi a,b cùng dấu được
\(\left|x-1\right|+\left|9-x\right|\ge\left|x-1+9-x\right|=8\)
Tương tự : \(\left|x-2\right|+\left|x-8\right|\ge6\)
\(\left|x-3\right|+\left|x-7\right|\ge4\)
\(\left|x-4\right|+\left|x-6\right|\ge2\)
Và \(\left|x-5\right|\ge0\)
Cộng các BĐT trên theo vế được \(D\ge0+2+4+6+8=20\)
Dấu đẳng thức xảy ra khi đồng thời các BĐT trong trị tuyệt đối cùng dấu (Mình không liệt kê ra vì dài) , và x - 5 = 0 => x = 5 thỏa mãn
Vậy D đạt giá trị nhỏ nhất bằng 20 khi x = 5
Có: \(\left|x-1\right|\ge x-1;\left|x-2\right|\ge x-2;\left|x-3\right|\ge x-3;\left|x-4\right|\ge x-4\)
\(\left|x-5\right|\ge0\)
\(\left|x-6\right|\ge6-x;\left|x-7\right|\ge7-x;\left|x-8\right|\ge8-x;\left|x-9\right|\ge9-x\)
Do đó, \(D\ge\left(x-1\right)+\left(x-2\right)+\left(x-3\right)+\left(x-4\right)+0+\left(6-x\right)+\left(7-x\right)+\left(8-x\right)+\left(9-x\right)\)
hay \(D\ge20\)
Dấu "=" xảy ra khi \(\begin{cases}x-4\ge0\\x-5=0\\6-x\le0\end{cases}\)\(\Rightarrow\begin{cases}x\ge4\\x=5\\x\le6\end{cases}\)=> x = 5
Vậy GTNN của D là 20 khi x = 5