Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(x-\left\{\left[-x-\left(x+3\right)\right]-\left[\left(x+2018\right)-\left(x+2019\right)\right]+21\right\}\)
\(=x-\left\{\left[-x-x-3\right]-\left[x+2018-x-2019\right]+21\right\}\)
\(=x-\left\{\left[-2x-3\right]-\left[2018-2019\right]+21\right\}\)
\(=x+2x+-3+1-21\)
\(=3x-23\)
=> \(3x-23=2020\)
\(3x=2020+23=2043\)
=> \(x=2043:3=681\)
Nhầm
\(=x-\left\{-2x-3+1+21\right\}\\ =x+2x+3-1-21\)
\(=3x-17\\ =>3x-17=2020\\ 3x=2020+17=2037\\ x=2037:3=679\)
\(\left|x-3y\right|^{2019}+\left|y+\text{4}\right|^{2020}=0\\ \)
mà \(\left|x-3y\right|\ge0\Rightarrow\left|x-3y\right|^{2019}\ge0\)
\(\left|y+4\right|\ge0\Rightarrow\left|y+4\right|^{2020}\ge0\)
=> phương trình xảy ra <=> \(\left|x-3y\right|=\left|y+4\right|=0\Rightarrow\hept{\begin{cases}y=-4\\x=-12\end{cases}}\)
\(\left|x-3y\right|^{2019}+\left|y+4\right|^{2020}=0\)
\(\text{Ta có : }\left|x-3y\right|^{2019}\ge0;\left|y+4\right|^{2019}\ge0\)
\(\Rightarrow\orbr{\begin{cases}\left|x-3y\right|^{2019}=0\\\left|y+4\right|^{2020}=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}\left|x-3y\right|=0\\\left|y+4\right|=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x-3y=0\\y+4=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=3y\left(1\right)\\y=-4\left(2\right)\end{cases}}\)
\(\text{Thay (2) vào (1) }\Rightarrow x=-12\)
a.\(A=\left|\frac{x}{5}+\frac{23}{2}\right|+\left|y-\frac{14}{3}\right|+2019\)
Ta có: \(\left|\frac{x}{5}+\frac{23}{2}\right|\ge0\forall x\)
\(\left|y-\frac{14}{3}\right|\ge0\forall x\)
\(\Rightarrow\left|\frac{x}{5}+\frac{23}{2}\right|+\left|y-\frac{14}{3}\right|\ge0\forall x\)
\(\Rightarrow\left|\frac{x}{5}+\frac{23}{2}\right|+\left|y-\frac{14}{3}\right|+2019\ge2019\)
Dấu = xảy ra khi :
\(\frac{x}{5}+\frac{23}{2}=0\Leftrightarrow\frac{x}{5}=-\frac{23}{2}\Leftrightarrow x=-\frac{115}{2}\)
\(y-\frac{14}{3}=0\Leftrightarrow y=\frac{14}{3}\)
Vậy ..............
Ta có:
a) \(\left|\frac{x}{5}+\frac{23}{2}\right|\ge0\forall x\)
\(\left|y-\frac{14}{3}\right|\ge0\forall y\)
=> \(\left|\frac{x}{5}+\frac{23}{2}\right|+\left|y-\frac{14}{3}\right|+2019\ge2019\forall x;y\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\frac{x}{5}+\frac{23}{2}=0\\y-\frac{14}{3}=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-\frac{115}{2}\\y=\frac{14}{3}\end{cases}}\)
Vậy Min của A = 2019 tại \(\hept{\begin{cases}x=-\frac{115}{2}\\y=\frac{14}{3}\end{cases}}\)
câu b tượng tự
a, Ta có : \(A=4-\left|2x+5\right|\le4\)
Dấu ''='' xảy ra khi x = -5/2
Vậy GTLN A là 4 khi x = -5/2
b, Ta có : \(\left|x-1\right|+5\ge5\)
\(\Rightarrow\dfrac{1}{\left|x-1\right|+5}\le\dfrac{1}{5}\)
Dấu ''='' xảy ra khi x = 1
Vậy GTLN B là 1/5 khi x = 1
c, \(C=4-\left|x-2\right|-\left|3y+6\right|\le4\)
Dấu ''='' xảy ra khi x = 2 ; y = -2
Vậy GTLN C là 4 khi x = 2 ; y = -2
a)
⇒ \(\frac{11x-1}{4}=\frac{10}{4}\)
⇒ 11x - 1 = 10
11x = 10 + 1 = 11
x = 11 : 11 = 1
b)
\(\left[{}\begin{matrix}3x-6=0\\\frac{x}{9}-\frac{1}{3}=0\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}3x=0+6\\\frac{x}{9}=0+\frac{1}{3}\end{matrix}\right.\)⇒ \(\left[{}\begin{matrix}3x=6\\\frac{x}{9}=\frac{1}{3}\end{matrix}\right.\)⇒ \(\left[{}\begin{matrix}x=6:3\\\frac{x}{9}=\frac{3}{9}\end{matrix}\right.\)⇒\(\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
Vậy x = 2 hoặc x = 3
c)
\(M=c\left(\frac{5}{7}+\frac{7}{14}-\frac{17}{14}\right)\)
\(M=c\left(\frac{10}{14}+\frac{7}{14}-\frac{17}{14}\right)\)
\(M=\left(\frac{2018}{2019}-\frac{2019}{2020}\right).0\)
M = 0
d)
\(N=\frac{-7}{13}+2-\frac{19}{13}+\frac{2020}{2018}.\frac{2018}{202}\)
\(N=\left(\frac{-7}{13}-\frac{19}{13}\right)+2+10\)
N = \(-2+2+10\)
N = 10
Bạn xem lại. Biểu thức C có GTLN chứ không có GTNN bạn nhé.