Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{\left(x+\frac{1}{2}\right)^2+\left(\frac{\sqrt{3}}{2}\right)^2}+\sqrt{\left(y+\frac{1}{2}\right)^2+\left(\frac{\sqrt{3}}{2}\right)^2}_{ }+\sqrt{\left(z-2\right)^2+\left(\sqrt{3}\right)^2}\ge.\)
\(\sqrt{\left(x+y+1\right)^2+\left(\sqrt{3}\right)^2}+\sqrt{\left(z-2\right)^2+\left(\sqrt{3}\right)^2}\ge\sqrt{\left(x+y+z-1\right)^2+12}=4.\)
Sử dụng Minkowski,
\(M=x-\sqrt{x}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\)
Dấu = xảy ra khi x=0
\(P=\sqrt[]{x}+\dfrac{3}{\sqrt[]{x}-1}\left(x>1\right)\)
\(P=\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}+1\)
Áp dụng bất đẳng thức Cauchy cho 2 số \(\sqrt[]{x}-1;\dfrac{3}{\sqrt[]{x}-1}\) ta được :
\(\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}\ge2\sqrt[]{\sqrt[]{x}-1.\dfrac{3}{\sqrt[]{x}-1}}\)
\(\Rightarrow\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}\ge2\sqrt[]{3}\)
\(\Rightarrow P=\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}+1\ge2\sqrt[]{3}+1\)
\(\Rightarrow Min\left(P\right)=2\sqrt[]{3}+1\)
ta có:
\(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\)
ta thấy: \(\sqrt{x}\ge0\rightarrow\sqrt{x}+1\ge1\\ \rightarrow\dfrac{1}{\sqrt{x}+1}\le1\\ \rightarrow\dfrac{2}{\sqrt{x}+1}\le2\\ \rightarrow\dfrac{-2}{\sqrt{x}+1}\ge-2\\ \rightarrow1-\dfrac{2}{\sqrt{x}+1}\ge1-2=-1\\ \rightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\ge-1\)
dấu "=" xảy ra khi x = 0
vậy tại x = 0 thì GTNN của \(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\) bằng -1