K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2021

Với \(x\ge\dfrac{1}{6}\Leftrightarrow A=5x^2-6x+1-1=5x^2-6x\)

\(A=5\left(x^2-2\cdot\dfrac{3}{5}x+\dfrac{9}{25}\right)-\dfrac{9}{5}=5\left(x-\dfrac{3}{5}\right)^2-\dfrac{9}{5}\ge-\dfrac{9}{5}\\ A_{min}=-\dfrac{9}{5}\Leftrightarrow x=\dfrac{3}{5}\left(1\right)\)

Với \(x< \dfrac{1}{6}\Leftrightarrow A=5x^2+6x-1-1=5x^2+6x-2\)

\(A=5\left(x^2+2\cdot\dfrac{3}{5}x+\dfrac{9}{25}\right)-\dfrac{19}{5}=5\left(x+\dfrac{3}{5}\right)^2-\dfrac{19}{5}\ge-\dfrac{19}{5}\\ A_{min}=-\dfrac{19}{5}\Leftrightarrow x=-\dfrac{3}{5}\left(2\right)\\ \left(1\right)\left(2\right)\Leftrightarrow A_{min}=-\dfrac{19}{5}\Leftrightarrow x=-\dfrac{3}{5}\)

5 tháng 10 2021

Với \(x\ge\dfrac{1}{3}\Leftrightarrow B=9x^2-6x-4\left(3x-1\right)+6=9x^2-18x+10\)

\(B=9\left(x^2-2x+1\right)+1=9\left(x-1\right)^2+1\ge1\\ B_{min}=1\Leftrightarrow x=1\left(1\right)\)

Với \(x< \dfrac{1}{3}\Leftrightarrow B=9x^2-6x+4\left(3x-1\right)+6=9x^2+6x+2\)

\(B=\left(9x^2+6x+1\right)+1=\left(3x+1\right)^2+1\ge1\\ B_{min}=1\Leftrightarrow x=-\dfrac{1}{3}\left(2\right)\)

\(\left(1\right)\left(2\right)\Leftrightarrow B_{min}=1\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)

14 tháng 8 2021

Bài 1

A= (x-2)(2x-1)-2x(x+3)=2x2-x-4x+2-2x2-6x=-11x+2

14 tháng 8 2021

Bài 1:

a) \(A=\left(x-2\right)\left(2x-1\right)-2x\left(x+3\right)\)

\(A=2x^2-x-4x+2-2x^2-6x\)

\(A=-11x+2\)

b) \(B=\left(3x-2\right)\left(2x+1\right)-\left(6x-1\right)\left(x+2\right)\)

\(B=6x^2+3x-4x-2-6x^2-12x+x+2\)

\(B=-12x\)

c) \(C=6x\left(2x+3\right)-\left(4x-1\right)\left(3x-2\right)\)

\(C=12x^2+18x-12x^2+8x+3x-2\)

\(C=29x-2\)

d) \(D=\left(2x+3\right)\left(5x-2\right)+\left(x+4\right)\left(2x-1\right)-6x\left(2x-3\right)\)

\(D=10x^2-4x+15x-6+2x^2-x+8x-4-12x^2+18x\)

\(D=36x-10\)

27 tháng 12 2021

\(A=\left(x^2+2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{5}{4}=\left(x+\dfrac{3}{2}\right)^2-\dfrac{5}{4}\ge-\dfrac{5}{4}\\ A_{min}=-\dfrac{5}{4}\Leftrightarrow x=-\dfrac{3}{2}\\ B=\left(x^2+2xy+y^2\right)+\left(x^2+6x+9\right)+3\\ B=\left(x+y\right)^2+\left(x+3\right)^2+3\ge3\\ B_{min}=3\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-3\end{matrix}\right.\\ C=-\left(x^2-2x+1\right)+1=-\left(x-1\right)^2+1\le1\\ C_{max}=1\Leftrightarrow x=1\)

15 tháng 10 2023

2:

a: \(9x^2-1=\left(3x\right)^2-1=\left(3x-1\right)\left(3x+1\right)\)

b: \(2\left(x-1\right)+x^2-x\)

\(=2\left(x-1\right)+x\left(x-1\right)\)

\(=\left(x-1\right)\left(x+2\right)\)

c: \(3x^2+14x-5\)

\(=3x^2+15x-x-5\)

\(=3x\left(x+5\right)-\left(x+5\right)=\left(x+5\right)\left(3x-1\right)\)

3: 

a: \(2x\left(x-1\right)-2x^2=4\)

=>\(2x^2-2x-2x^2=4\)

=>-2x=4

=>x=-2

b: \(x\left(x-3\right)-\left(x+2\right)\left(x-1\right)=5\)

=>\(x^2-3x-\left(x^2+x-2\right)=5\)

=>\(x^2-3x-x^2-x+2=5\)

=>-4x=3

=>x=-3/4

c: \(4x^2-25+\left(2x+5\right)^2=0\)

=>\(\left(2x-5\right)\left(2x+5\right)+\left(2x+5\right)^2=0\)

=>\(\left(2x+5\right)\left(2x-5+2x+5\right)=0\)

=>4x(2x+5)=0

=>\(\left[{}\begin{matrix}x=0\\x=-\dfrac{5}{2}\end{matrix}\right.\)

Câu 2: 

a: \(\Leftrightarrow3x^2+2x-1=0\)

\(\Leftrightarrow\left(x+1\right)\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{3}\end{matrix}\right.\)

b: \(\Leftrightarrow x^3-4x-x^3-8=4\)

hay x=-3

3: \(\Leftrightarrow a-15=0\)

hay a=15

a) Ta có: \(A=\left(4-x\right)\left(16+4x+x^2\right)-\left(4-x\right)^3\)

\(=64-x^3+\left(x-4\right)^3\)

\(=64-x^3+x^3-12x^2+48x-64\)

\(=-12x^2+48x\)

b) Ta có: \(B=\left(3x+2\right)\left(9x^2-6x+4\right)-\left(3x-2\right)\left(9x^2+6x+4\right)\)

\(=27x^3+8-27x^3+8\)

=16

c) Ta có: \(C=\left(x+1\right)\left(x^2-x+1\right)-x\left(x+1\right)^2\)

\(=x^3+1-x\left(x^2+2x+1\right)\)

\(=x^3+1-x^3-2x^2-x\)

\(=-2x^2-x+1\)

21 tháng 9 2021

a. 9x2 - 6x - 3 = 0

<=> 3(3x2 - 2x - 1) = 0

<=> 3(3x2 - 3x + x - 1) = 0

<=> \(3\left[3x\left(x-1\right)+\left(x-1\right)\right]=0\)

<=> 3(3x + 1)(x - 1) = 0

<=> \(\left[{}\begin{matrix}3x+1=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{3}\\x=1\end{matrix}\right.\)

b. (2x + 1)2 - 4(x + 2)2 = 9

<=> (2x + 1)2 - \(\left[2\left(x+2\right)\right]^2=9\)

<=> (2x + 1 - 2x - 4)(2x + 1 + 2x + 4) = 9

<=> -3(4x + 5) = 9

<=> 4x + 5 = -3

<=> 5 + 3 = -4x

<=> -4x = 8

<=> -x = 2

<=> x = -2

21 tháng 9 2021

a) \(\Leftrightarrow\left(9x^2-6x+1\right)-4=0\)

\(\Leftrightarrow\left(3x-1\right)^2-4=0\)

\(\Leftrightarrow3\left(x-1\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)

b) \(\Leftrightarrow4x^2+4x+1-4x^2-16x-16=9\)

\(\Leftrightarrow12x=-24\Leftrightarrow x=-2\)

c) \(\Leftrightarrow3x^2-6x+3-3x^2+15x=21\)

\(\Leftrightarrow9x=18\Leftrightarrow x=2\)

d) \(\Leftrightarrow x^2+6x+9-x^2-4x+32=1\)

\(\Leftrightarrow2x=-40\Leftrightarrow x=-20\)

11 tháng 10 2021

\(x^3-9x^2+26x-24\)

\(=x^3-4x^2-5x^2+20x+6x-24\)

\(=\left(x-4\right)\left(x^2-5x+6\right)\)

\(=\left(x-4\right)\left(x-2\right)\left(x-3\right)\)