Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= -x2+2x+3
=>A= -(x2-2x+3)
=>A= -(x2-2.x.1+1+3-1)
=>A=-[(x-1)2+2]
=>A= -(x+1)2-2
Vì -(x+1)2 ≤0=> A≤-2
Dấu "=" xảy ra khi
-(x+1)2=0 => x=-1
Vây A lớn nhất= -2 khi x= -1
B=x2-2x+4y2-4y+8
=> B= (x2-2x+1)+(4y2-4y+1)+6
=> B=(x-1)2+(2y+1)2+6
=> B lớn nhất=6 khi x=1 và y=-1/2
a) \(P=x^2-2x+5\)
\(=x^2-2x+1+4\)
\(=\left(x-1\right)^2+4\ge4\)
\(MinP=4\Leftrightarrow x-1=0\Rightarrow x=1\)
b) \(Q=2x^2-6x\)
\(=2\left(x^2-3x\right)\)
\(=2\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}\right)\)
\(=2\left(\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\right)\)
\(=-\frac{9}{2}-2\left(x-\frac{3}{2}\right)^2\le\frac{-9}{2}\)
\(MinQ=\frac{-9}{2}\Leftrightarrow x-\frac{3}{2}=0\Rightarrow x=\frac{3}{2}\)
M=x^2+y^2-x+6y+10
M=(x^2-x+1/4)+(y^2+6y+9)+3/4
M=(x-1/2)^2+(y+3)^2+3/4
\(minM=\frac{3}{4}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}\)
a: \(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)
\(=2x^2-3x+1\)
b: \(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)
\(=2x^2-3x+1\)
Ta có : P = x2 - 2x + 5 = x2 - 2x + 1 + 4 = (x - 1)2 + 4
Vì \(\left(x-1\right)^2\ge0\forall x\)
Suy ra : \(P=\left(x-1\right)^2+4\ge4\forall x\)
Nên : Pmin = 4 khi x = 1
b) Ta có Q = 2x2 - 6x = 2(x2 - 3x) = 2(x2 - 3x + \(\frac{9}{4}-\frac{9}{4}\) ) = \(2\left(x^2-3x+\frac{9}{4}\right)-\frac{9}{2}=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\)
Vì \(2\left(x-\frac{3}{2}\right)^2\ge0\forall x\)
SUy ra ; \(Q=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)
Vậy \(Q_{min}=-\frac{9}{2}\) khi \(x=\frac{3}{2}\)
a.
$A=x^2-8x+5=(x^2-8x+16)-11=(x-4)^2-11$
Do $(x-4)^2\geq 0, \forall x\in\mathbb{R}$
$\Rightarrow A=(x-4)^2-11\geq 0-11=-11$
Vậy $A_{\min}=-11$. Giá trị này đạt tại $x-4=0\Leftrightarrow x=4$
b.
$B=2x^2+6x-4=2(x^2+3x+1,5^2)-\frac{17}{2}=2(x+1,5)^2-\frac{17}{2}$
$\geq 2.0-\frac{17}{2}=-\frac{17}{2}$
Vậy $B_{\min}=\frac{-17}{2}$ tại $x=-1,5$
c. Biểu thức này không có min, chỉ có max
d.
$D=x^2-x+1=(x^2-2.\frac{1}{2}.x+\frac{1}{2^2})+\frac{3}{4}$
$=(x-\frac{1}{2})^2+\frac{3}{4}\geq 0+\frac{3}{4}$
Vậy $D_{\min}=\frac{3}{4}$. Giá trị này đạt tại $x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}$
Áp dụng Bunyakovsky, ta có :
\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)
=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)
=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)
Mấy cái kia tương tự
a)P=x2-2x+5
Ta có:x2-2x+5=x2-2x+1+4
=(x-1)2+4
Vì (x-1)2\(\ge\)0
Suy ra:(x-1)2+4\(\ge\)4
Dấu = xảy ra khi x-1=0
x=1
Vậy MinP=4 khi x=1
b)M=2x2-6x
Ta có:2x2-6x=2.(x2-3x)
=2.(x2-2.1,5x+2,25)-4,5
=2.(x-1,5)2-4,5
Vì 2.(x-1,5)2\(\ge\)0
Suy ra:2.(x-1,5)2-4,5\(\ge\)-4,5
Dấu = xảy ra khi x-1,5=0
x=1,5
Vậy Min M=-4,5 khi x=1,5
a)
\(x^2-2x+5\)
\(=\left(x^2-2.x.1+1^2\right)+4\)
\(=\left(x-1\right)^2+4\)
Ta có
\(\left(x-1\right)^2+4\ge4\) ( với mọi x)
Dấu " = " xảy ra khi x=1
Vậy biểu thức đạt giá trị nhỏ nhất là 4 khi x=1
b)
\(2x^2-6x\)
\(=\left[\left(\sqrt{2}.x\right)^2-2.\sqrt{2}.x.\frac{3\sqrt{2}}{2}+\frac{9}{2}\right]-\frac{9}{2}\)
\(=\left(\sqrt{2}x-\frac{3\sqrt{2}}{2}\right)^2-\frac{9}{2}\)
Ta có
\(\left(\sqrt{2}x-\frac{3\sqrt{2}}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\) với mọi x
Dấu " = " xảy ra khi \(x=\frac{3}{2}\)
Vậy biểu thức đạt giá trị nhỏ nhất là \(-\frac{9}{2}\Leftrightarrow x=\frac{3}{2}\)
a) P = x2 - 2x + 5
= x2 - 2x + 1 - 1 + 5
= ( x - 1 )2 + 4
Ta có : \(\left(x-1\right)^2\ge\)\(0\)\(\forall\)\(x\)
\(\Rightarrow\left(x-1\right)^2+4\)\(\ge\)\(0\)\(\forall\)\(x\)
Dấu " = " xảy ra <=> ( x - 1 )2 = 0
<=> x - 1 = 0
<=> x = 1
Vậy GTNN của P là 4 khi x = 1 .
b) M = 2x2 - 6x
= 2 ( x2 - 3x )
= \(2\left[\left(x^2-2x\frac{3}{2}+\frac{9}{4}-\frac{9}{4}\right)\right]\)
= \(2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\)
Ta có : \(2\left(x-\frac{3}{2}\right)^2\)\(\ge\)\(0\)\(\forall\)\(x\)
\(\Rightarrow\)\(2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)\(\forall\)\(x\)
Dấu " = " xảy ra \(\Leftrightarrow\)\(\left(x-\frac{3}{2}\right)^2=0\)
\(\Leftrightarrow\) \(\left(x-\frac{3}{2}\right)=0\)
\(\Leftrightarrow\)\(x=\frac{3}{2}\)
Vậy GTNN của M là \(-\frac{9}{2}\)khi \(x=\frac{3}{2}\).