Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Tìm max:
Áp dụng BĐT Bunhiacopxky ta có:
\(y^2=(3\sqrt{x-1}+4\sqrt{5-x})^2\leq (3^2+4^2)(x-1+5-x)\)
\(\Rightarrow y^2\leq 100\Rightarrow y\leq 10\)
Vậy \(y_{\max}=10\)
Dấu đẳng thức xảy ra khi \(\frac{\sqrt{x-1}}{3}=\frac{\sqrt{5-x}}{4}\Leftrightarrow x=\frac{61}{25}\)
Tìm min:
Ta có bổ đề sau: Với $a,b\geq 0$ thì \(\sqrt{a}+\sqrt{b}\geq \sqrt{a+b}\)
Chứng minh:
\(\sqrt{a}+\sqrt{b}\geq \sqrt{a+b}\)
\(\Leftrightarrow (\sqrt{a}+\sqrt{b})^2\geq a+b\)
\(\Leftrightarrow \sqrt{ab}\geq 0\) (luôn đúng).
Dấu "=" xảy ra khi $ab=0$
--------------------
Áp dụng bổ đề trên vào bài toán ta có:
\(\sqrt{x-1}+\sqrt{5-x}\geq \sqrt{(x-1)+(5-x)}=2\)
\(\sqrt{5-x}\geq 0\)
\(\Rightarrow y=3(\sqrt{x-1}+\sqrt{5-x})+\sqrt{5-x}\geq 3.2+0=6\)
Vậy $y_{\min}=6$
Dấu "=" xảy ra khi \(\left\{\begin{matrix} (x-1)(5-x)=0\\ 5-x=0\end{matrix}\right.\Leftrightarrow x=5\)
Bài 2:
\(A=\sqrt{(x-1994)^2}+\sqrt{(x+1995)^2}=|x-1994|+|x+1995|\)
Áp dụng BĐT dạng \(|a|+|b|\geq |a+b|\) ta có:
\(A=|x-1994|+|x+1995|=|1994-x|+|x+1995|\geq |1994-x+x+1995|=3989\)
Vậy \(A_{\min}=3989\)
Đẳng thức xảy ra khi \((1994-x)(x+1995)\geq 0\Leftrightarrow -1995\leq x\leq 1994\)
\(P=\frac{\frac{1}{a^2}}{\frac{1}{b}+\frac{1}{c}}+\frac{\frac{1}{b^2}}{\frac{1}{a}+\frac{1}{c}}+\frac{\frac{1}{c^2}}{\frac{1}{a}+\frac{1}{b}}\)
Đặt \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\Rightarrow xyz=1\Rightarrow P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(P\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+x+y}=\frac{x+y+z}{2}\ge\frac{3\sqrt[3]{xyz}}{2}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(x=y=z\Leftrightarrow a=b=c=1\)
Cần cách khác thì nhắn cái
c/\(P=\frac{\frac{2\left(\sqrt{x}-1\right)}{x\sqrt{x}-1}}{1-\frac{x+2}{x+\sqrt{x}+1}}\)\(\Leftrightarrow P=\frac{2\left(\sqrt{x}-1\right)}{x\sqrt{x}-1}:\frac{\sqrt{x}-1}{x+\sqrt{x}+1}\)
\(\Leftrightarrow\frac{2\left(x+\sqrt{x}+1\right)}{x\sqrt{x}-1}\)
Xét P-1 ta có \(\frac{2x+2\sqrt[]{x}+2-x\sqrt{x}+1}{x\sqrt{x}-1}=\frac{2x+2\sqrt{x}-x\sqrt{x}+3}{x\sqrt{x}-1}\)
với x<1 thì tử dương, mẫu âm, với x>1 thì tử âm và mẫu dương
Từ đó ta luuon có P-1\(\le0\RightarrowĐPCM\)
a/\(\Leftrightarrow x=\frac{5-\sqrt{5}}{1-\sqrt{5}}+\frac{5+\sqrt{5}}{1+\sqrt{5}}-\frac{25-5}{1-5}-1\)
\(\Leftrightarrow x=0+5-1\Leftrightarrow x=4\)
Thay vào B đc \(B=\frac{4+2}{4+2+1}=\frac{6}{7}\)
b/
mình sẽ xóa câu này mong bạn gửi lại câu hỏi khác để rõ ràng cho các bạn khác tham khảo nha
a ) Đặt \(A=\sqrt{x-2}+\sqrt{4-x}\). Nhận xét A > 0
\(\Rightarrow A^2=\left(\sqrt{x-2}+\sqrt{4-x}\right)^2=2+2\sqrt{\left(x-2\right)\left(4-x\right)}\)
Vì \(\sqrt{\left(x-2\right)\left(4-x\right)}\ge0\Rightarrow2+2\sqrt{\left(x-2\right)\left(4-x\right)}\ge2\Rightarrow A^2\ge2\)
\(\Rightarrow A\ge\sqrt{2}\)(Vì A > 0)
Dấu đẳng thức xảy ra khi và chỉ khi \(\hept{\begin{cases}2\le x\le4\\\left(x-2\right)\left(4-x\right)=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=4\end{cases}}\)
Vậy ....
b) Tương tự .
c) Đề phải là tìm GTLN
\(C=\left|x\right|\sqrt{1-x^2}=\sqrt{x^2\left(1-x^2\right)}\) . Áp dụng bđt Cauchy : \(\sqrt{x^2\left(1-x^2\right)}\le\frac{x^2+1-x^2}{2}=\frac{1}{2}\)
Dấu đẳng thức xảy ra khi và chỉ khi \(x^2=1-x^2\Leftrightarrow x=\frac{\sqrt{2}}{2}\)hoặc \(x=-\frac{\sqrt{2}}{2}\)
Vậy ....
GTNN dễ thấy bằng 0 tại x = 0 hoặc x = -1 hoặc x = 1
a)Ta cần chứng minh BĐT \(\sqrt{T}+\sqrt{H}\ge\sqrt{T+H}\)
2 vế luôn dương bình phương ta có:
\(\left(\sqrt{T}+\sqrt{H}\right)^2\ge\left(\sqrt{T+H}\right)^2\)
\(T+H+2TH\ge T+H\)
\(2TH\ge0\) (luôn đúng do \(TH\ge0\))
Dấu = xảy ra khi \(TH\ge0\)
Áp dụng ta có \(\sqrt{x-2}+\sqrt{4-x}\ge\sqrt{x-2+4-x}=\sqrt{2}\)
Dấu = xảy ra khi (x-2)(4-x)\(\ge\)0 suy ra \(\orbr{\begin{cases}2\le0\le4\\\left(x-2\right)\left(4-x\right)=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=2\\x=4\end{cases}}\)
Vậy ....
b) Áp dụng tương tự ta có:
\(\sqrt{7-x}+\sqrt{x-5}\ge\sqrt{7-x+x-5}=\sqrt{2}\)
Dấu = khi (7-x)(x-5)\(\ge\)0 suy ra \(\orbr{\begin{cases}x\le5\le7\\\left(7-x\right)\left(x-5\right)=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=7\\x=5\end{cases}}\)
Vậy...
c)Ta thấy \(\left|x\right|\sqrt{1-x^2}\ge0\)
Dấu = khi x=0 hoặc x=±1