Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=x^2-4xy+5y^2+10x-22y+28\)
\(=\left(x^2-4xy+4y^2\right)+y^2+10x-22y+28\)
\(=\left(x-2y\right)^2+10\left(x-2y\right)+25+\left(y^2-2y+1\right)+2\)
\(=\left(x-2y-5\right)^2+\left(y-1\right)^2+2\ge2\)
Đẳng thức khó tìm quá huhu
a) x2 - 6x + 11 = ( x2 - 6x + 9 ) + 2 = ( x - 3 )2 + 2 ≥ 2 ∀ x
Dấu "=" xảy ra khi x = 3
=> GTNN của bthuc = 2 <=> x = 3
b) x2 - 20x + 101 = ( x2 - 20x + 100 ) + 1 = ( x - 10 )2 + 1 ≥ 1 ∀ x
Dấu "=" xảy ra khi x = 10
=> GTNN của bthuc = 1 <=> x = 10
c) x2 - 4xy + 5y2 + 10x - 22y + 28
= ( x2 - 4xy + 4y2 + 10x - 20y + 25 ) + ( y2 - 2y + 1 ) + 2
= [ ( x2 - 4xy + 4y2 ) + ( 10x - 20y ) + 25 ] + ( y - 1 )2 + 2
= [ ( x - 2y )2 + 2( x - 2y ).5 + 52 ] + ( y - 1 )2 + 2
= ( x - 2y + 5 )2 + ( y - 1 )2 + 2 ≥ 2 ∀ x, y
Dấu "=" xảy ra khi x = -3 ; y = 1
=> GTNN của bthuc = 2 <=> x = -3 ; y = 1
b: \(B=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(=\left(x^2+5x\right)^2-36\ge-36\)
Dấu '=' xảy ra khi x=0 hoặc x=-5
a: \(A=x^2-20x+100+1=\left(x-10\right)^2+1>=1\)
Dấu '=' xảy ra khi x=10
Ta có
A=x2_6x+11=x2_2x3xx+32+2=(x-3)2+2>=2
=>MIN A=2 khi và chỉ khi x-3=0 hay x=3
B=x2-20x+101=x2-2x10xx+102+1=(x-10)2+1>=1
=>MIN B=1 khi và chỉ khi x-10=0 hay x=10
a) Ta có : x2 - 20x + 101
= x2 - 20x + 100 + 1
= (x - 10)2 + 1
Mà (x - 10)2 lớn hơn hoặc bằng 0
Nên (x - 10)2 + 1 lớn hơn hoặc bằng 1
=> GTNN của biểu thức là 1 . khi x = 10
b) 4a2+4a+2
=(2a)2+2.2a+1+1
=(2a+1)2+1
Vì (2a+1)2 \(\ge\)0 với mọi x \(\in\)R
=>(2a+1)2+1\(\ge\)1 với mọi x \(\in\)R
dấu "=" xảy ra <=> 2a+1=0 <=> 2a=-1 <=> a= -1/2
Bài 1
a) \(\left(x+1\right)^3+\left(x-1\right)^3+x^3-3x\left(x-1\right)\left(x+1\right)\)
\(=x^3+3x^2+3x+1+x^3-3x^2+3x-1+x^3-3x\left(x^2-1\right)\)
\(=3x^3+6x-3x^3+3x=9x\)
b) \(\left(a+b+c\right)^2+\left(a+b-c\right)^2+\left(2a-b\right)^2\)
\(=a^2+b^2+c^2+2\left(ab+bc+ca\right)+a^2+b^2+c^2+2ab-2bc-2ca+4a^2-4ab+b^2\)
\(=6a^2+3b^2+2c^2+4ab-4ab=6a^2+3b^2+2c^2\)
Bài 2
a) \(x^2-20x+101=\left(x^2-20x+100\right)+1=\left(x-10\right)^2+1\ge1\)
Dấu = xảy ra \(< =>\left(x-10\right)^2=0< =>x-10=0< =>x=10\)
b) \(4a^2+4a+2=4\left(a^2+a+\frac{1}{4}\right)+1=4\left(a+\frac{1}{2}\right)^2+1\ge1\)
Dấu = xảy ra \(< =>4\left(a+\frac{1}{2}\right)^2=0< =>a+\frac{1}{2}=0< =>a=-\frac{1}{2}\)
c) \(x^2-4xy+5y^2+10x-22y+28=\left(x^2-4xy+4y^2\right)+10\left(x-2y\right)+y^2-2y+1+27\)
\(=\left(x-2y\right)^2+2.5.\left(x-2y\right)+25+\left(y-1\right)^2+2\)
\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
Dấu = xảy ra \(< =>\hept{\begin{cases}y-1=0\\x-2y+5=0\end{cases}< =>\hept{\begin{cases}y=1\\x=-3\end{cases}}}\)
Bài 3
a) \(4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
Dấu = xảy ra \(< =>\left(x-2\right)^2=0< =>x-2=0< =>x=2\)
b) \(x-x^2=-\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
Dấu = xảy ra \(< =>\left(x-\frac{1}{2}\right)^2=0< =>x-\frac{1}{2}=0< =>x=\frac{1}{2}\)
\(A=x^2-6x+11\)
\(A=\left(x^2-6x+9\right)+2\)
\(A=\left(x-3\right)^2+2\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x-3\right)^2=0\)
\(\Leftrightarrow\)\(x-3=0\)
\(\Leftrightarrow\)\(x=3\)
Vậy GTNN của \(A\) là \(2\) khi \(x=3\)
\(B=x^2-20x+101\)
\(B=\left(x^2-20x+100\right)+1\)
\(B=\left(x-10\right)^2+1\ge1\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x-10\right)^2=0\)
\(\Leftrightarrow\)\(x-10=0\)
\(\Leftrightarrow\)\(x=10\)
Vậy GTNN của \(B\) là \(1\) khi \(x=10\)
Chúc bạn học tốt ~
\(A=x^2-6x+11\)
\(A=\left(x^2-6x+9\right)+2\)
\(A=\left(x-3\right)^2+2\)
Mà \(\left(x-3\right)^2\ge0\)
\(\Rightarrow A\ge2\)
Dấu "=" xảy ra khi : \(x-3=0\Leftrightarrow x=3\)
Vậy \(A_{Min}=2\Leftrightarrow x=3\)
b) \(B=x^2-20x+101\)
\(B=\left(x^2-20x+100\right)+1\)
\(B=\left(x-10\right)^2+1\)
Mà \(\left(x-10\right)^2\ge0\)
\(\Rightarrow B\ge1\)
Dấu "=" xảy ra khi : \(x-10=0\Leftrightarrow x=10\)
Vậy \(B_{Min}=1\Leftrightarrow x=10\)
c) \(C=x^2-4xy+5y^2+10x-22y+28\)
\(C=\left(x^2-4xy+4y^2\right)+y^2+10x-22y+28\)
\(C=\left[\left(x-2y\right)^2+2\left(x-2y\right).5+25\right]+\)\(\left(y^2-2y+1\right)+2\)
\(C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\)
Mà \(\left(x-2y+5\right)^2\ge0\)
\(\left(y-1\right)^2\ge0\)
\(\Rightarrow C\ge2\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
Vây \(C_{Min}=2\Leftrightarrow\left(x;y\right)=\left(-3;1\right)\)
max A= -201 tại x=10(câu này dễ)
B= (x-2y+5)^2+(y-1)^2+2 suy ra max B=2 tại y=1 => x = -3. ^_^