K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 1 2018

Lời giải:

Xét biểu thức C

Ta có: \(C=x+\frac{4}{(x-y)(y+1)^2}=x-y+y+\frac{4}{(x-y)(y+1)^2}\)

\(C=(x-y)+\frac{y+1}{2}+\frac{y+1}{2}+\frac{4}{(x-y)(y+1)^2}-1\)

Áp dụng BĐT AM-GM ta có:

\((x-y)+\frac{y+1}{2}+\frac{y+1}{2}+\frac{4}{(x-y)(y+1)^2}\geq 4\sqrt[4]{(x-y).\frac{(y+1)^2}{4}.\frac{4}{(x-y)(y+1)^2}}=4\)

\(\Rightarrow C\geq 4-1=3\Leftrightarrow C_{\min}=3\)

Dấu bằng xảy ra khi \(x=2; y=1\)

Biểu thức D không có điều kiện gì thì không có min em nhé. Trừ khi \(D=x+\frac{1}{xy(x-y)}\)

31 tháng 1 2018

x,y > 0 có được coi là điều kiện không ạ? (câu D ý)

NV
24 tháng 3 2021

\(A=\dfrac{x^2+y^2}{xy}+\dfrac{xy}{x^2+y^2}=\dfrac{x^2+y^2}{4xy}+\dfrac{xy}{x^2+y^2}+\dfrac{3\left(x^2+y^2\right)}{4xy}\)

\(A\ge2\sqrt{\dfrac{\left(x^2+y^2\right)xy}{4xy\left(x^2+y^2\right)}}+\dfrac{3.2xy}{4xy}=\dfrac{5}{2}\)

Dấu "=" xảy ra khi \(x=y\)

\(C=\dfrac{\left(x+y\right)^2-4xy}{xy}+\dfrac{6xy}{\left(x+y\right)^2}=\dfrac{\left(x+y\right)^2}{xy}+\dfrac{6xy}{\left(x+y\right)^2}-4\)

\(C=\dfrac{3\left(x+y\right)^2}{8xy}+\dfrac{6xy}{\left(x+y\right)^2}+\dfrac{5\left(x+y\right)^2}{8xy}-4\)

\(C\ge2\sqrt{\dfrac{18xy\left(x+y\right)^2}{8xy\left(x+y\right)^2}}+\dfrac{5.4xy}{8xy}-4=\dfrac{3}{2}\)

Dấu "=" xảy ra khi \(x=y\)

24 tháng 3 2021

Thầy Lâm hộ em ạ .

NV
27 tháng 12 2020

\(\dfrac{\left(x+y+1\right)^2}{xy+x+y}\ge\dfrac{3\left(xy+x+y\right)}{xy+x+y}=3\)

\(\Rightarrow A=\dfrac{8\left(x+y+1\right)^2}{9\left(xy+x+y\right)}+\dfrac{\left(x+y+1\right)^2}{9\left(xy+x+y\right)}+\dfrac{xy+x+y}{\left(x+y+1\right)^2}\)

\(A\ge\dfrac{8}{9}.3+2\sqrt{\dfrac{\left(x+y+1\right)^2\left(xy+x+y\right)}{\left(xy+x+y\right)\left(x+y+1\right)^2}}=\dfrac{10}{3}\)

Dấu "=" xảy ra khi \(x=y=1\)

28 tháng 12 2020

mk nghĩ nên đăt =t (t>=3). cho dễ làm

11 tháng 5 2023

Ta có \(a^4+b^4\ge\dfrac{\left(a^2+b^2\right)^2}{2}\ge\dfrac{\left(\dfrac{\left(a+b\right)^2}{2}\right)^2}{2}=\dfrac{\left(a+b\right)^4}{8}\). Áp dụng cho biểu thức A, suy ra \(A\ge\dfrac{\left(x^2+\dfrac{1}{x^2}+y^2+\dfrac{1}{y^2}+2\right)^4}{8}\). Ta tìm GTNN của \(P=x^2+\dfrac{1}{x^2}+y^2+\dfrac{1}{y^2}+2\). Ta có 

\(P=x^2+\dfrac{1}{16x^2}+y^2+\dfrac{1}{16y^2}+\dfrac{15}{16}\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+2\)

\(P\ge2\sqrt{x^2.\dfrac{1}{16x^2}}+2\sqrt{y^2.\dfrac{1}{16y^2}}+\dfrac{15}{16}\left(\dfrac{\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2}{2}\right)+2\)

    \(=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{15}{16}.\left(\dfrac{4^2}{2}\right)+2\) \(=\dfrac{21}{2}\). Do đó \(P\ge\dfrac{21}{2}\) \(\Leftrightarrow A\ge\dfrac{\left(\dfrac{17}{2}+2\right)^4}{8}\). Vậy GTNN của A là \(\dfrac{\left(\dfrac{17}{2}+2\right)^4}{8}\), ĐTXR \(\Leftrightarrow x=y=\dfrac{1}{2}\)

 

11 tháng 5 2023

Gợi ý: \(\dfrac{a^4+b^4}{2}\ge\left(\dfrac{a+b}{2}\right)^4\)

14 tháng 1 2021

Áp dụng bất đẳng thức AM - GM:

\(P\ge3\sqrt[3]{\dfrac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}}\).

Áp dụng bất đẳng thức AM - GM ta có:

\(xy+1=xy+\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}\ge5\sqrt[5]{\dfrac{xy}{4^4}}\).

Tương tự: \(yz+1\ge5\sqrt[5]{\dfrac{yz}{4^4}};zx+1\ge5\sqrt[5]{\dfrac{zx}{4^4}}\).

Do đó \(\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)\ge125\sqrt[5]{\dfrac{\left(xyz\right)^2}{4^{12}}}\)

\(\Rightarrow\dfrac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}\ge125\sqrt[5]{\dfrac{1}{4^{12}\left(xyz\right)^3}}\).

Mà \(xyz\le\dfrac{\left(x+y+z\right)^3}{27}=\dfrac{1}{8}\)

Nên \(\dfrac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}\ge125\sqrt[5]{\dfrac{8^3}{4^{12}}}=125\sqrt[5]{\dfrac{1}{2^{15}}}=\dfrac{125}{8}\)

\(\Rightarrow P\ge\dfrac{15}{2}\).

Vậy...

 

 

 

17 tháng 1 2021

Áp dụng bất đẳng thức AM - GM:

P≥33√(xy+1)(yz+1)(zx+1)xyz.

Áp dụng bất đẳng thức AM - GM ta có:

xy+1=xy+14+14+14+14≥55√xy44.

Tương tự: yz+1≥55√yz44;zx+1≥55√zx44.

Do đó (xy+1)(yz+1)(zx+1)≥1255√(xyz)2412

⇒(xy+1)(yz+1)(zx+1)xyz≥1255√1412(xyz)3.

Mà xyz≤(x+y+z)327=18

Nên  (xy+1)(yz+1)(zx+1)xyz≥1255√83412=1255√1215=1258 

⇒P≥152.

NV
18 tháng 3 2021

\(\dfrac{x^3}{4\left(y+2\right)}+\dfrac{x\left(y+2\right)}{16}\ge\dfrac{x^2}{4}\) ; \(\dfrac{y^3}{4\left(x+2\right)}+\dfrac{y\left(x+2\right)}{16}\ge\dfrac{y^2}{4}\)

\(\Rightarrow Q+\dfrac{2xy+2x+2y}{16}\ge\dfrac{x^2+y^2}{4}\ge\dfrac{\left(x+y\right)^2}{8}\)

\(\Rightarrow Q\ge\dfrac{\left(x+y\right)^2-\left(x+y\right)}{8}-\dfrac{1}{2}=\dfrac{\left(x+y-4\right)^2+7\left(x+y\right)-16}{8}-\dfrac{1}{2}\)

\(\Rightarrow Q\ge\dfrac{7\left(x+y\right)-16}{8}-\dfrac{1}{2}\ge\dfrac{14\sqrt{xy}-16}{8}-\dfrac{1}{2}=1\)

\(Q_{min}=1\) khi \(x=y=2\)

Câu a :

\(\left\{{}\begin{matrix}\left(x^2+1\right)\left(y^2+1\right)=10\\\left(x+y\right)\left(xy-1\right)=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2y^2+x^2+y^2=9\\\left(x+y\right)\left(xy-1\right)=3\end{matrix}\right.\)

Đặt \(x+y=S\) ; \(xy=P\) , phương trình trở thành :

\(\left\{{}\begin{matrix}S^2-2P+P^2=9\\S\left(P-1\right)=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(\dfrac{3}{P-1}\right)^2-2P+P^2=9\\S=\dfrac{3}{P-1}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}P=0\\P=-2\\P=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}S=-3\\S=-1\\S=3\end{matrix}\right.\)

Với \(S=-3\)\(P=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=-3\\xy=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=-3\end{matrix}\right.\\\left\{{}\begin{matrix}x=-3\\y=0\end{matrix}\right.\end{matrix}\right.\)

Với \(S=-1\)\(P=-2\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\xy=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\\\left\{{}\begin{matrix}x=-2\\y=1\end{matrix}\right.\end{matrix}\right.\)

Với \(S=3\)\(P=2\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\end{matrix}\right.\)

Vậy phương trình có các cặp nghiệm là : \(\left(x;y\right)=\left(0;-3\right)\) ; \(\left(x;y\right)=\left(-3;0\right)\) ; \(\left(x;y\right)=\left(1;-2\right)\) ; \(\left(x;y\right)=\left(-2;1\right)\) ; \(\left(x;y\right)=\left(2;1\right)\) ; \(\left(x;y\right)=\left(1;2\right)\)

Wish you study well !!

Phùng Khánh Linh Ko đúng đâu ! Bạn thay \(x=y=\dfrac{1}{2}\) vào thì ra tới 10 lận . \(\dfrac{1}{\dfrac{1}{2}}+\dfrac{4}{\dfrac{1}{2}}=10\) lận cơ ?