\(\frac{x+15}{\sqrt{x}+1}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
27 tháng 8 2021

\(F=\frac{x-1+16}{\sqrt{x}+1}=\sqrt{x}-1+\frac{16}{\sqrt{x}+1}=\sqrt{x}+1+\frac{16}{\sqrt{x}+1}-2\)

\(\ge2\sqrt{\left(\left(\sqrt{x}+1\right).\frac{16}{\sqrt{x}+1}\right)}-2=8-2=6\) vậy GTNN của F=6 khi \(\sqrt{x}+1=\frac{16}{\sqrt{x}+1}\Leftrightarrow x=9\)

\(G=\frac{x-9+4}{\sqrt{x}+3}=\sqrt{x}-3+\frac{4}{\sqrt{x}+3}=\sqrt{x}+3+\frac{4}{\sqrt{x}+3}-6=\frac{5}{9}\left(\sqrt{x}+3\right)+\frac{4}{9}\left(\sqrt{x}+3\right)+\frac{4}{\sqrt{x}+3}-6\)

\(\ge\frac{5}{9}\left(\sqrt{x}+3\right)+2\sqrt{\left(\frac{4}{9}\left(\sqrt{x}+3\right).\frac{4}{\sqrt{x}+3}\right)}-6\ge\frac{5}{3}+\frac{8}{3}-6=-\frac{5}{3}\) vậy GTNN G =- 5/3 khi x=0

27 tháng 8 2021

\(F=\frac{x-1+16}{\sqrt{x}+1}=\frac{x-1}{\sqrt{x}+1}+\frac{16}{\sqrt{x}+1}=\sqrt{x}-1+\frac{16}{\sqrt{x}+1}\)

\(=\left[\left(\sqrt{x}+1\right)+\frac{16}{\sqrt{x}+1}\right]-2\ge2\sqrt{\left(\sqrt{x}+1\right)\cdot\frac{16}{\sqrt{x}+1}}-2=6\)

Dấu "=" xảy ra <=> x = 9

11 tháng 2 2020

A = \(x^2+3x-7=x^2+2x\frac{3}{2}+\frac{9}{4}-\frac{37}{4}\)

\(=\left(x+\frac{3}{2}\right)^2-\frac{37}{4}\ge-\frac{37}{4}\)

\(\Rightarrow\)min A = \(-\frac{37}{4}\Leftrightarrow x=-\frac{3}{2}\)

B = \(x-5\sqrt{x}-1\) ĐKXĐ: \(x\ge0\)

\(=x-2\sqrt{x}\frac{5}{2}+\frac{25}{4}-\frac{29}{4}=\left(\sqrt{x}-\frac{5}{2}\right)^2-\frac{29}{4}\ge-\frac{29}{4}\)

\(\Rightarrow\)min B = \(-\frac{29}{4}\Leftrightarrow x=\frac{25}{4}\)( thỏa mãn)

C = \(\frac{-4}{\sqrt{x}+7}\) ĐKXĐ:\(x\ge0\)

Ta có: \(\sqrt{x}+7\ge7\Rightarrow\frac{4}{\sqrt{x}+7}\le\frac{4}{7}\)\(\Leftrightarrow\frac{-4}{\sqrt{x}+7}\ge-\frac{4}{7}\)

\(\Rightarrow\)min C = \(-\frac{4}{7}\Leftrightarrow x=0\)

D = \(\frac{\sqrt{x}+1}{\sqrt{x}+3}\) ĐKXĐ:\(x\ge0\)

\(=1-\frac{2}{\sqrt{x}+3}\ge1-\frac{2}{3}=\frac{1}{3}\)

\(\Rightarrow\)min D = \(\frac{1}{3}\Leftrightarrow x=0\)

11 tháng 2 2020

E = \(\frac{x+7}{\sqrt{x}+3}\) ĐKXĐ:\(x\ge0\)

\(=\frac{x-9+16}{\sqrt{x}+3}=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)+16}{\sqrt{x}+3}=\sqrt{x}-3+\frac{16}{\sqrt{x}+3}=\sqrt{x}+3+\frac{16}{\sqrt{x}+3}-6\ge2\sqrt{16}-6=2\)

\(\Rightarrow\)min E = \(2\Leftrightarrow x=1\)(thỏa mãn)

F = \(\frac{x^2+3x+5}{x^2}\) ĐKXĐ: \(x\ne0\)

\(\Leftrightarrow\)\(x^2\left(F-1\right)-3x-5=0\)

△ = \(3^2+20\left(F-1\right)\ge0\)\(\Leftrightarrow F\ge\frac{11}{20}\)

\(\Rightarrow\)min F = \(\frac{11}{20}\Leftrightarrow x=-\frac{10}{3}\)( thỏa mãn)

18 tháng 5 2021

                  Bài làm :

a) ĐK : x ≠ 9 và x ≥0

b) ĐK : x ≠ ± 2 và x≤-2 ; 2≤x

ĐỀ KIỂM TRA 1 TIẾT TỔNG HỢP​1. Tính \(\sqrt{6+2\sqrt{8\sqrt{2}-9}}-\sqrt{7-\sqrt{2}}\)  (căn 7 - căn căn 2 ) (1đ)2. Rút gọn: \(\frac{2\sqrt{2}+2\sqrt{3}+4}{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{12}+5}\)(1đ)3. Rút gọn \(\sqrt{\frac{27\left(m^2-6m+9\right)}{48}}\)với m < 3 (1đ)4. Tìm GTNN của biểu thức và x tương ứng: \(M=\sqrt{16x^2-8x+2}\)(0,5đ)5. Cho biểu thức:...
Đọc tiếp

ĐỀ KIỂM TRA 1 TIẾT TỔNG HỢP

1. Tính \(\sqrt{6+2\sqrt{8\sqrt{2}-9}}-\sqrt{7-\sqrt{2}}\)  (căn 7 - căn căn 2 ) (1đ)

2. Rút gọn: \(\frac{2\sqrt{2}+2\sqrt{3}+4}{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{12}+5}\)(1đ)

3. Rút gọn \(\sqrt{\frac{27\left(m^2-6m+9\right)}{48}}\)với m < 3 (1đ)
4. Tìm GTNN của biểu thức và x tương ứng: \(M=\sqrt{16x^2-8x+2}\)(0,5đ)

5. Cho biểu thức: (2,5đ)
\(A=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)với x >0, x khác 1 
Hãy tìm x để A có nghĩa rồi:
a/ Rút gọn A
b/ Tìm x biết A =-1 
6. Giai phương trình \(\sqrt{16x-32}-\sqrt{4x-8}+\sqrt{9x-18}=1\)(0,5đ)
7. Giai phương trình \(\sqrt{x^2+2x+6}=x+2\)(0,5đ)
8. Thực hiện phép tính: \(B=\sqrt{5}\left(1-\sqrt{5}\right)+\sqrt{\sqrt{5}+1}.\sqrt{\sqrt{5}-1}\)(0,5đ)
9. Rút gọn biểu thức E = \(\sqrt{\frac{b}{a}}+ab\sqrt{\frac{1}{ab}}-\frac{b}{a}.\sqrt{\frac{a}{b}}\)(0,5đ)
10. Giai phương trình sau: \(\sqrt{4x-12}-\sqrt{25x-75}-\sqrt{x-3}=4-\sqrt{16x-48}\)(0,5đ)
11. Cho biểu thức: \(F=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}-1}{\sqrt{a}+2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)với a >0, a khác 1
a/ Rút gọn F
b/ Tìm giá trị của a để trị F = -F
 

0
12 tháng 8 2021

đk  x khác 9, x >= 0

\(p=\frac{\sqrt{x}-1}{\sqrt{x}-3}-\frac{5\sqrt{x}-3}{x-9}\)

\(p=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x+3}\right)}-\frac{5\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(p=\frac{x+2\sqrt{x}-3-5\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(p=\frac{x-3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(p=\frac{\sqrt{x}}{\sqrt{x}+3}\)

b, P.(căn x + 3) = |x - 2|

có P = căn x/ căn x + 3

=> căn x = |x - 2|

=> x = |x - 2|^2

=> x = x^2 - 4x + 4

=> x^2 - 5x + 4 = 0

=> (x-1)(x-4) = 0

=> x = 1 hoặc x = 4 (tm)

vậy x = 1 hoặc x = 4

12 tháng 8 2021

\(Q=\frac{\sqrt{x}-1}{\sqrt{x}+2}-\frac{5\sqrt{x}-2}{x-4}\)

\(Q=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(Q=\frac{x-3\sqrt{x}-2-5\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(Q=\frac{x-8\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x+2}\right)}\)

ủa sao không thấy gọn ta

8 tháng 5 2020

giúp mik vs cảm ơn mn