Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm GTLN, GTNN của biểu thức sau
\(1,A=\left(x-1\right)^2-10\)
\(2,B=-|x-1|-2\left(2y-1\right)^2+100\)
1: \(A=\left(x-1\right)^2-10\ge-10\)
Dấu '=' xảy ra khi x=1
2: \(B=-\left|x-1\right|-2\cdot\left(2y-1\right)^2+100\le100\)
Dấu '=' xảy ra khi x=1 và y=1/2
`(x-1)^2 >=0 => (x-1)^2 - 10 >= -10`
Dấu bằng xảy ra khi `x = 1`.
Vì `-|x-1| <=0, -2(2y-1)^2 <= 0`
`=> -|x-1| - 2(2y-1)^2 + 100 <= 100`
Dấu bằng xảy ra `<=> x = 1, y = 1/2`.
Ta có :
\(A=\left(x-1\right)^4+\left(x-3\right)^4+6\left(x-1\right)^2\left(x-3\right)^2\)
\(A=\left(x-1\right)^4+2\left(x-1\right)^2\left(x-3\right)^2+\left(x-3\right)^4+4\left(x-1\right)^2\left(x-3\right)^2\)
\(A=\left[\left(x-1\right)^2+\left(x-3\right)^2\right]^2+4\left(x-1\right)^2\left(x-3\right)^2\)
\(A=\left[2x^2-8x+10\right]^2+4\left(x^2-4x+3\right)^2\)
\(A=\left[2\left(x-2\right)^2+2\right]+4\left[\left(x-2\right)^2-1\right]^2\)
\(A=4\left(x-2\right)^4+8\left(x-2\right)^2+4+4\left(x-2\right)^4-8\left(x-2\right)^2+4\)
\(A=8\left(x-2\right)^4+8\ge8\)
Vậy GTNN của biểu thức A là 8 \(\Leftrightarrow x=2\)
Đặt x-2=y
=> \(A=\left(y+1\right)^4+\left(y-1\right)^4+6\left(y+1\right)^2\left(y-1\right)^2\)
Khai triển A ta được
\(A=2y^4+12y^2+2+6\left(y^4-2y^2+1\right)\)
\(=8y^4+8=8\left(y^4+1\right)\ge8\)
Dấu "=" xảy ra khi y=0 lúc đó x=0+2=2
Vậy Amin=8 khi x=2
\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)=\left(x^2+3x\right)\left(x^2+3x+2\right)=\left(x^2+3x\right)^2+2\left(x^2+3x\right)+1-1=\left(x^2+3x+1\right)^2-1\ge-1\)
Vậy MIN bt là -1 với \(x^2+3x+1=0\Rightarrow\left[{}\begin{matrix}x=\frac{-3+\sqrt{5}}{2}\\x=\frac{-3-\sqrt{5}}{2}\end{matrix}\right.\)
Ta có x(x+1)(x+2)(x+3)=\(\left(x^2+3x\right)\left(x^2+3x+2\right)\)
=\(\left(x^2+3x+1-1\right)\left(x^2+3x+1+1\right)\)
Đặt \(x^2+3x+1=a\)<=>(a-1)(a+1)=\(a^2-1\)≥-1
=\(\left(x^2+3x+1\right)^2-1\)≥-1
Vậy Min biểu thức là -1,với \(x^2+3x+1=0\)
<=>x=\(=\frac{-3+\sqrt{5}}{2}\),\(\frac{-3-\sqrt{5}}{2}\)
Sử dụng BĐT Cauchy Schwarz ta dễ có:
\(P=\frac{x^2\left(x-1\right)+y^2\left(y-1\right)}{\left(x-1\right)\left(y-1\right)}\)
\(=\frac{x^2}{y-1}+\frac{y^2}{x-1}\)
\(\ge\frac{\left(x+y\right)^2}{x+y-2}\)
Ta cần chứng minh: \(\frac{\left(x+y\right)^2}{x+y-2}\ge8\)
\(\Leftrightarrow\left(x+y\right)^2-8\left(x+y\right)+16\ge0\)
\(\Leftrightarrow\left(x+y-4\right)^2\ge0\)( ĐPCM )
Có : \(P=\frac{\left(x^3+y^3\right)-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\)
\(=\frac{x^2\left(x-1\right)+y^2\left(y-1\right)}{\left(x-1\right)\left(y-1\right)}=\frac{x^2}{y-1}+\frac{y^2}{x-1}\)
Theo BĐT Cô - si ta có :
\(\frac{x^2}{y-1}+4\left(y-1\right)\ge2\sqrt{\frac{x^2}{y-1}.4\left(y-1\right)}=4x\)
\(\frac{y^2}{x-1}+4\left(x-1\right)\ge4y\)
Do đó ; \(\frac{x^2}{y-1}+\frac{y^2}{x-1}+4.\left(x+y-2\right)\ge4\left(x+y\right)\)
\(\Leftrightarrow\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge8\)
Hay : \(P\ge8\)
Dấu "=" xảy ra khi \(x=y=2\)
Vậy \(P_{min}=8\) khi \(x=y=2\)