\(|x+\dfrac{1}{2}|+|x+\dfrac{1}{3}|+|x+\dfrac{1}{4}|\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2017

\(B=\left|x+\dfrac{1}{2}\right|+\left|x+\dfrac{1}{3}\right|+\left|x+\dfrac{1}{4}\right|\)

\(=\left|x+\dfrac{1}{2}\right|+\left|x+\dfrac{1}{3}\right|+\left|-\left(x+\dfrac{1}{4}\right)\right|\)

\(=\left|x+\dfrac{1}{2}\right|+\left|x+\dfrac{1}{3}\right|+\left|-x-\dfrac{1}{4}\right|\)

\(\ge x+\dfrac{1}{2}+0-x-\dfrac{1}{4}=\dfrac{1}{4}\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x+\dfrac{1}{2}\ge0\\x+\dfrac{1}{3}=0\\x+\dfrac{1}{4}\le0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\ge-\dfrac{1}{2}\\x=-\dfrac{1}{3}\\x\le-\dfrac{1}{4}\end{matrix}\right.\)\(\Rightarrow x=-\dfrac{1}{3}\)

21 tháng 4 2017

lời giải

kèm giải thích

\(A=\left|x+\dfrac{1}{2}\right|+\left|x+\dfrac{1}{3}\right|+\left|x+\dfrac{1}{4}\right|\ge\left|\left(x+\dfrac{1}{2}\right)-\left(x+\dfrac{1}{4}\right)\right|+\left|x+\dfrac{1}{3}\right|=\dfrac{1}{4}+\left|x+\dfrac{1}{3}\right|\)

đẳng thức khi \(-\dfrac{1}{2}\le x\le-\dfrac{1}{4}\) (*)

\(\dfrac{1}{4}+\left|x+\dfrac{1}{3}\right|\ge\dfrac{1}{4}\)

Đẳng thức khi x=-1/3 phù hợp đk (*)

(nếu không phù hợp với (*) phải xét cực trị biên)

Kết luận

GTNN (A) =1/4 khi x=-1/3

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

NV
10 tháng 11 2018

1.\(\dfrac{log_ac}{log_{ab}c}=log_ac.log_c\left(ab\right)=log_ac.\left(log_ca+log_cb\right)=log_ac.log_ca+log_ac.log_cb=\dfrac{log_ac}{log_ac}+\dfrac{log_cb}{log_ca}=1+log_ab\)

2. \(log_{ax}bx=\dfrac{log_abx}{log_aax}=\dfrac{log_ab+log_ax}{log_aa+log_ax}=\dfrac{log_ab+log_ax}{1+log_ax}\)

3. \(\dfrac{1}{log_ax}+\dfrac{1}{log_{a^2}x}+...+\dfrac{1}{log_{a^n}x}=log_xa+log_xa^2+...+log_xa^n\)

\(=log_xa+2log_xa+...+n.log_xa=log_xa+2log_xa+...+n.log_xa\)

\(=log_xa.\left(1+2+...+n\right)=\dfrac{n\left(n+1\right)}{2}log_xa=\dfrac{n\left(n+1\right)}{2.log_ax}\)

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

23 tháng 5 2017

Hàm lũy thừa, mũ và loagrit