K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2023

C = \(x^2\) - 12 \(x\) + 34

C = (\(x^2\) - 12\(x\) + 36) - 2

C = (\(x\) - 6)2 - 2

Vì (\(x\) - 6)2 ≥ 0 ⇒ ( \(x\) - 6)2 - 2 ≥  -2

C(min) = - 2 ⇔ \(x\) - 6 = 0 ⇔  \(x\) = 6

Vậy giá trị nhỏ nhất của biểu thức là - 2 xảy ra khi \(x\) = 6

 

 

26 tháng 5 2023

C = �2 - 12  + 34

C = (�2 - 12 + 36) - 2

C = ( - 6)2 - 2

Vì ( - 6)2 ≥ 0 ⇒ (  - 6)2 - 2 ≥  -2

C(min) = - 2 ⇔  - 6 = 0 ⇔   = 6

Vậy giá trị nhỏ nhất của biểu thức là - 2 diễn ra khi  = 6

25 tháng 5 2023

`B =9x^2 +6x = (3x)^2 + 2*3x*1 +1 -1)`

`=(3x +1)^2 -1`

Do `(3x+1)^2 >=0 AA x`

`=> (3x+1)^2 -1 >=-1 AA x`

hay `B>=-1`

Dấu ''='' xảy ra khi và chỉ khi `3x+1=0 =>x =-1/3`

Vậy GTNN của `B=-1` khi `x=-1/3`

25 tháng 5 2023

B = 9\(x^2\) + 6\(x\) 

B = 9\(x^2\) + 6\(x\) + 1 - 1

B = (3\(x\) + 1)2 - 1 

Vì (3\(x\) + 1)2 ≥ 0 ⇒ (3\(x\) + 1)2 - 1 ≥ -1

B(min) = -1⇔ \(x\) = - \(\dfrac{1}{3}\) 

27 tháng 9 2021

\(A=\left(x+3\right)^2+2\ge2\\ A_{min}=2\Leftrightarrow x=-3\\ B=\left(x^2+3x+\dfrac{9}{4}\right)-\dfrac{29}{4}=\left(x+\dfrac{3}{2}\right)^2-\dfrac{29}{4}\ge-\dfrac{29}{4}\\ B_{min}=-\dfrac{29}{4}\Leftrightarrow x=-\dfrac{3}{2}\\ C=\left(9x^2-12x+4\right)+2017=\left(3x-2\right)^2+2017\ge2017\\ C_{min}=2017\Leftrightarrow x=\dfrac{2}{3}\)

18 tháng 11 2018

\(A=x^2-6x+10\)

\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)

\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\)     \(\forall x\in z\)

\(\Leftrightarrow A_{min}=1khix=3\)

\(B=3x^2-12x+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\)    \(\forall x\in z\)

\(\Leftrightarrow B_{min}=-11khix=2\)

1:

a: A=x^2+4x+4+13

=(x+2)^2+13>=13

Dấu = xảy ra khi x=-2

b; =x^2-8x+16+84

=(x-4)^2+84>=84

Dấu = xảy ra khi x=4

c: =x^2+x+1/4+19/4

=(x+1/2)^2+19/4>=19/4

Dấu = xảy ra khi x=-1/2

 

10 tháng 8 2018

a, \(A=x^2-6x+11\)

\(=x^2-2.3.x+9+2\)

\(=\left(x-3\right)^2+2\)

Ta có: \(\left(x-3\right)^2\ge0\Leftrightarrow\left(x-3\right)^2+2\ge2\)

Dấu "=" xảy ra \(\Leftrightarrow x-3=0\)\(\Leftrightarrow x=3\)

Vậy \(MinA=3\Leftrightarrow x=3\)

b, \(B=2x^2+10x-1\)

\(=2\left(x^2+5x\right)-1\)

\(=2\left(x^2+2.\frac{5}{2}x+\frac{25}{4}\right)-\frac{21}{4}\)

\(=2\left(x+\frac{5}{2}\right)^2-\frac{21}{4}\)

Ta có: \(\left(x+\frac{5}{2}\right)^2\ge0\Leftrightarrow\left(x+\frac{5}{2}\right)^2-\frac{21}{4}\ge-\frac{21}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{5}{2}\right)^2=0\Leftrightarrow x+\frac{5}{2}=0\Leftrightarrow x=-\frac{5}{2}\)

Vậy \(MinB=-\frac{21}{4}\Leftrightarrow x=-\frac{5}{2}\)

c, \(C=5x-x^2\)

\(=-x^2+5x\)

\(=-\left(x^2+2.\frac{5}{2}x+\frac{25}{4}\right)+\frac{25}{4}\)

\(=-\left(x+\frac{5}{2}\right)^2+\frac{25}{4}\)

Ta có: \(-\left(x+\frac{5}{2}\right)^2\le0\Leftrightarrow-\left(x+\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{5}{2}\right)^2=0\Leftrightarrow x=-\frac{5}{2}\)

Vậy \(MaxB=\frac{25}{4}\Leftrightarrow x=-\frac{5}{2}\)