Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm GTNN chủa biểu thức:
a, A=x2+6y2-2xy-12x+2y+45
b, B=x2-2xy+3y2-2xy-10y+20
c, C=x2+4y2-2xy-10x+4y+32
+) A=\(x^2-4xy+5y^2+6y-7=\left(x^2-2.x.2y+4y^2\right)+\left(y^2-2.3y+9\right)-16\)
=\(\left(x-2y\right)^2+\left(y-3\right)^2-16\)
ta có : \(\left(x-2y\right)^2\ge0\) với mọi x,y
\(\left(y-3\right)^2\ge0\) với mọi x,y
=> \(\left(x-2y\right)^2+\left(y-3\right)^2\ge0\)
=> \(\left(x-2y\right)^2+\left(y-3\right)^2-16\ge-16\)
=> \(A\ge-16\)
=> MinA=-16 khi \(\begin{cases}x=2y\\y=3\end{cases}\)<=> x=6 và y=3
* \(3x+y=1\Rightarrow y=1-3x\)
\(M=3x^2+\left(1-3x\right)^2=3x^2+1-6x+9x^2=12x^2-6x+1=12\left(x^2-\dfrac{1}{2}x+\dfrac{1}{12}\right)=12\left(x^2-2.x.\dfrac{1}{4}+\dfrac{1}{16}\right)+\dfrac{1}{4}=12\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\ge\dfrac{1}{4}\)\(\Rightarrow Min_M=\dfrac{1}{4}\Leftrightarrow x=y=\dfrac{1}{4}\)
\(N=x^2+xy+y^2-3x-3y\)
\(4N=4x^2+4xy+4y^2-12x-12y\)
\(4N=\left(4x^2+4xy+y^2\right)-12x-6y+9+3y^2-6y+3-12\)
\(4N=\left(2x+y\right)^2-2.3\left(2x+y\right)+9+3\left(y-1\right)^2-12\)
\(4N=\left(2x+y-3\right)^2+3\left(y-1\right)^2-10\ge-12\)
\(\Rightarrow N\ge-3\)
\(\Rightarrow Min_N=-3\Leftrightarrow x=y=1\)
-x2- 9y2 +4x+6y +1= - (x2 + 9y2 - 4x - 6y + 1 - 2 - 4 + 4) = - ( x2 - 4x + 4 + (3y)2 - 6y + 1 - 6 = - ( (x - 2)2 + (3y - 1)2 - 6 )
(x - 2)2 và (3y - 1)2 đều \(\ge\)0 với mọi x và y
=> P \(\ge\) - (-6) <=> P\(\ge\) 6
vậy P nhỏ nhất = 6 tại x = 2 và y = \(\frac{1}{3}\)
M=x2-2.x.1/2+(1/2)2-(1/2)2 +y2-2.y.3+32-32+10
M=(x-1/2)2-1/4+(y-3)2-9+10
M=(x-1/2)2 +(y-3)2+3/4 luon >=3/4
Vậy: GTNN cua M la 3/4 khi x=1/2 và y=3
Đặt A = ( x+3y-5)2-6y+2037
Ta Có :
( x+3y-5)2 \(\ge\)0
=> ( x+3y-5)2-6y+2037 \(\ge\)0-6y+2037
=> A \(\ge\)6y+2037
vậy A nhỏ nhất bằng 6y+2037
cho mình tích nha