Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2x^2+9y^2-6xy-6x-12y+2018\)
\(2A=4x^2+18y^2-12xy-12x-24y+4036\)
\(2A=\left(4x^2-12xy+9y^2\right)-12x-24y+9y^2+4036\)
\(2A=\left(2x-3y\right)^2-6\left(2x-3y\right)+9+\left(9y^2-42y+49\right)+3975\)
\(2A=\left(2x-3y-3\right)^2+\left(3y-7\right)^2+3975\ge3975\)
\(\Rightarrow A\ge\frac{3975}{2}\) Dấu "=" xảy ra tại \(y=\frac{7}{3};x=5\)
Em sai từ dòng thứ 3 xuống dòng thứ 4
4036 = 9+49 + 3975 ???
Điều đó dẫn đến kết quả của em sai. Kiểm tra lại nhé Khải!
Q= 2x2+9y2-6xy-6x-12y+2015
=(x2-6xy+9y2-12y+4+4x)+(x2-10x+25)+1986
=(x-3y+2)2+(x-5)2+1986
Do (x-3y+2)2>0
(x-5)2>0
=>(x-3y+2)2+(x-5)2+1986>1986
=>Min Q=1986 <=>(x-3y+2)2=0 và (x-5)2=0
<=>x=5 và y=7/3
A=2x2 + 9y2 - 6xy - 6x -12y + 2015
=(x2-6xy + 9y2)+(4x - 12y) + x2 - 10x +2015
=(x - 3y)2+ 4(x - 3y) + 4 + (x2 - 10x +25)+ 1986
=(x- 3y - 2)2+(x - 5)2 +1986
ta có (x-3y-2)2 > hoặc = 0; (x-5)2>hoặc =0(với mọi giá trị x,y)
=> (x- 3y -2)2+ (x-5)2 > hoặc = 0(với mọi giá trị x,y)
=>(x - 3y -2)2 + (x - 5)2+1986 > hoặc = 1986
=> A đạt GTNN là 1986 khi:
(x-3y-2)2 + (x - 5)2 +1986 = 1986
<=>(x-3y-2)2 + (x - 5)2= 0
<=>x-5 =0 <=> x=5
và x- 3y -2=0 hay 5 - 3y -2=0 <=>-3y= - 3 <=> y=1
Vậy GTNN của A là 1986 khi x= 5 và y=1
( BAÌ NÀY CÓ GÌ KHÔNG HIỂU CỨ HỎI NHA ! )
ta có:
S= 2x^2+9y^2-6xy-6x-12y-2017
=(x^2+9y^2-6xy)+x^2-6x-12y-2017
=(x+3y)^2+x^2-6x-12y-2017
=(x+3y)^2-(4x+12y)+4+(x^2-2x-1)-2021
=[(x+3y)^2-4(x+3y)+4]+(x-1)^2-2021
=(x+3y-2)^2+(x-1)^2-2021
Vì (x+3y-2)^2 lớn hơn hoặc bằng 0 với mọi x,y; (x-1)^2 lớn hơn hoặc bằng 0 với mọi x,y
nên (x+3y-2)^2+(x-1)^2-2021 lớn hơn hoặc bằng-2021 hay S lớn hơn hoặc bằng -2021
Dấu bằng xảy ra khi và chỉ khi:
x+3y-2=0
và x-1=0 (dùng kí hiệu và)
tương đương(dùng dấu) 1+3y=2
và x=1
tương đương(dùng dấu) y=1/3
và x=1
Vậy GTNN của S là -2021 khi x=1,y=1/3
À mình hỏi dấu /x-5/ nghĩa là gì
nhớ tick cho mình nhá