\(\left(x-a\right)^2\)+\(\left(x-b\right)^2\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2017

Câu này trùng 960055 nhé bạn.

Kết quả là \(\left(\frac{b+c-2a}{3}\right)^2\)+\(\left(\frac{a+c-2b}{3}\right)^2\)+\(\left(\frac{a+b-2c}{3}\right)^2\)

22 tháng 7 2019

\(A=x^2+3x+7\)

\(=x^2+2.1,5x+2,25+4,75\)

\(=\left(x+1,5\right)^2+4,75\ge4,75\)

Vậy \(A_{min}=4,75\Leftrightarrow x=-1,5\)

22 tháng 7 2019

\(B=2x^2-8x\)

\(=2\left(x^2-4x\right)\)

\(=2\left(x^2-4x+4-4\right)\)

\(=2\left[\left(x-2\right)^2-4\right]\)

\(=2\left(x-2\right)^2-8\ge-8\)

Vậy \(B_{min}=-8\Leftrightarrow x=2\)

4 tháng 7 2020

easy !

Áp dụng bđt cauchy schwarz dạng engel :

\(VT=\frac{1^2}{a}+\frac{1^2}{b}+\frac{1^2}{c}\ge\frac{3^2}{1}=9\)

dấu = xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}\)

Có thưởng thì thưởng số chẵn a nhé :)) ko thích 1001 đâu !

Bài 1 : 

a, \(f\left(x\right)=x\left(1-2x\right)+\left(2x^2-x+d\right)\)

\(=x-2x^2+2x^2-x+d=d\)

Đặt \(f\left(x\right)=0\)hay \(d=0\)

Vậy phươnng trình có nghiệm là d = 0 (đề có j sai ko nhỉ?)

b, \(g\left(x\right)=x\left(x-1\right)+1=x^2-x+1\)

Ta có : \(\left(-1\right)^2-4=1-4< 0\)Vô nghiệm 

27 tháng 7 2018

\(B=x^2-6x+y^2-2y+12=\left(x^2-6x+9\right)\left(y^2-2y+1\right)+2\)
\(B=\left(x-3\right)^2+\left(y-1\right)^2+2\text{ }\)
Ta thấy B lớn hơn hoặc bằng 2 suy ra GTNN của B là 2 
Dấu = xảy ra khi x=3; y=1
\(C=2x^2-6x=\left(2x^2-6x+4,5\right)-4,5=2\left(x^2-3x+2,25\right)-4,5\)
\(C=2\left(x-1,5\right)^2-4,5\)
Ta thấy C luôn luôn lớn hơn hoặc bằng -4,5 nên GTNN của C là -4,5 
Dấu = xảy ra khi x=1,5
Tối mình full cho còn giờ mình đi đá bóng đây

27 tháng 7 2018

1) \(D=\frac{2016}{-4x^2+4x-5}\). Để D đạt giá trị nhỏ nhất suy ra \(-4x^2+4x-5\)đạt giá trị lớn nhất. 
Ta có \(-4x^2+4x-5=-4x^2+4x-1-4=\left(-4x^2+4x-1\right)-4\)
\(-4\left(x^2-x+\frac{1}{4}\right)-4=-4\left(x-\frac{1}{2}\right)^2-4\).
Ta Thấy:\(-4\left(x-\frac{1}{2}\right)^2\) bé hơn hoặc bằng 0 nên \(-4\left(x-\frac{1}{2}\right)^2-4\)bé hơn hoặc bằng -4
nên ..... bạn tự kết luận

12 tháng 9 2017

Đăng ít thôi.

12 tháng 9 2017

Liên quan à!!!

20 tháng 6 2019

phân tích đa thức thành nhân tử đi

20 tháng 6 2019

1a) A = \(x^2-4x+2023=\left(x-2\right)^2+2019\)

Ta luôn có: (x - 2)2 \(\ge\)\(\forall\)x

 => (x - 2)2 + 2019 \(\ge\)2019 \(\forall\)x

Hay A \(\ge\)\(\forall\)x

Dấu "=" xảy ra khi : (x - 2)2 = 0 => x - 2 = 0 => x = 2

Nên Amin = 2019 khi x = 2

19 tháng 6 2019

a) \(A=25x^2+3y^2-10x+11\)

\(A=\left(5x-1\right)^2+3y^2+11\ge11\forall x;y\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{5}\\y=0\end{matrix}\right.\)

b) \(B=\left(x-3\right)^2+\left(x-11\right)^2\)

\(B=2\left(x^2-14x+65\right)\)

\(B=2\left[\left(x-7\right)^2+16\right]\)

\(B=2\left(x-7\right)^2+32\ge32\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=7\)

c) \(C=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)\)

\(C=\left(x^2-5x-6\right)\left(x^2-5x+6\right)\)

Đặt \(x^2-5x-6=a\)

\(C=a\left(a+12\right)\)

\(C=a^2+12a+36-36\)

\(C=\left(a+6\right)^2-36\ge-36\)

Dấu "=" xảy ra \(\Leftrightarrow a=-6\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)

19 tháng 6 2019

\(C=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)\\ C=\left(x+1\right)\left(x-6\right)\left(x-2\right)\left(x-3\right)\\ C=\left(x^2-5x-6\right)\left(x^2-5x+6\right)\\ C=\left(x^2-5x\right)^2-6^2\\ C=\left(x^2-5x\right)^2-36\)

Ta có:

\(\left(x^2-5x\right)^2\ge0\\ \Rightarrow C=\left(x^2-5x\right)^2-36\ge-36\)

Dấu "=" xảy ra khi và chỉ khi:

(x2 - 5x)2 = 0 => x2 - 5x = 0 => x(x - 5) = 0

=> x = 5 hoặc x = 0

Vậy MinC = -36 <=> x = 5; x = 0

14 tháng 8 2016

Bài 1:

Ta có : \(\left(x^2-1\right)\left(x^2-4\right)\left(x^2-7\right)\left(x^2-10\right)< 0\)

\(\Leftrightarrow\left[\left(x^2-1\right)\left(x^2-10\right)\right].\left[\left(x^2-4\right)\left(x^2-7\right)\right]< 0\)

\(\Leftrightarrow\left(x^4-11x^2+10\right)\left(x^4-11x^2+28\right)< 0\)

Đặt \(y=x^4-11x^2+19\), ta có : \(\left(y-9\right)\left(y+9\right)< 0\)

\(\Leftrightarrow y^2< 81\Leftrightarrow-9< y< 9\) \(\Leftrightarrow\hept{\begin{cases}y>-9\left(1\right)\\y< 9\left(2\right)\end{cases}}\)

Giải (1) được : \(x^4-11x^2+28>0\) \(\Leftrightarrow\left(x^2-7\right)\left(x^2-4\right)>0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2>7\\x^2< 4\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x>\sqrt{7}\\x< -\sqrt{7}\end{cases}}\)hoặc  \(-2< x< 2\)

Giải (2) được : 

\(\Leftrightarrow\hept{\begin{cases}x^2< 1\\x^2>10\end{cases}}\)(loại)  hoặc \(1< x^2< 10\)(nhận)

\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 10\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x< -1\\x>1\end{cases}}\)và \(-\sqrt{10}< x< \sqrt{10}\)

\(\Rightarrow\orbr{\begin{cases}-\sqrt{10}< x< -1\\1< x< \sqrt{10}\end{cases}}\)

Kết hợp (1) và (2) : \(-2< x< -1\);;\(1< x< 2\)\(\sqrt{7}< x< \sqrt{10}\)\(-\sqrt{10}< x< -\sqrt{7}\)

Suy ra các giá trị nguyên của x là : \(x\in\left\{-3;3\right\}\)

14 tháng 8 2016

Bài 1: 

Có: \(x^2-10< x^2-7< x^2-4< x^2-1\)

Để tích trên < 0

\(\left(x^2-1\right);\left(x^2-4\right);\left(x^2-7\right)\)cùng dương và \(\left(x^2-10\right)\)âm

\(\Rightarrow x^2-10< 0\)\(x^2-7>0\)

\(\Rightarrow x^2< 10\)và \(x^2>7\)

\(\Rightarrow7< x^2< 10\)

\(\Rightarrow x^2=9\Rightarrow x=+;-3\)