K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2020

+) \(B=2x^2-4x+1\)

\(\Leftrightarrow B=2\left(x^2-2x+\frac{1}{2}\right)\)

\(\Leftrightarrow B=2\left(x^2-2x+1-\frac{1}{2}\right)\)

\(\Leftrightarrow B=2\left(x-1\right)^2-1\ge-1\)

Min B = -1 \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)

2 tháng 10 2020

B = 2x2 - 4x + 1

= 2( x2 - 2x + 1 ) - 1

= 2( x - 1 )2 - 1 ≥ -1 ∀ x

Dấu "=" xảy ra khi x = 1

=> MinB = -1 <=> x = 1

D = -3x2 - 6x + 9 ( vầy chứ nhỉ ? )

= -3( x2 + 2x + 1 ) + 12

= -3( x + 1 )2 + 12 ≤ 12 ∀ x

Dấu "=" xảy ra khi x = -1

=> MaxD = 12 <=> x = -1

6 tháng 8 2016

d)  D = x4 - 6x2 + 10

D = (X2)2 - 2. x2. 3 + 32 + 1

D = (x2 - 3)2 + 1

(x2 - 3) >= 0 với mọi x

(x2 - 3)+ 1 >=1 với moi5 x

Vậy GTNN của D là 1

21 tháng 7 2017

A)\(A=2.x^2-4.x+10\)

\(2A=4.x^2-8x+20\)

\(2A=4.x^2-2.2x.2+2^2+16\)

\(2A=\left(2x-2\right)^2+16\ge16\forall x\)

\(A=8\)

DẤU =XẢY RA KHI \(\left(2x-2\right)^2=0\leftrightarrow x=1\)

VẬY GTNN CỦA A LÀ 8 VỚI x=1

C)\(\left(x-1\right)\left(x+2\right)+3x+5\)

\(C=x^2+2x-x-2+3x+5\)

\(C=x^2+4x+3\)

\(4C=4x^2+16x+12\)

\(4C=4x^2+2.2x.4+4^2-4\)

\(4C=\left(2x+4\right)^2-4\ge-4\forall x\)

\(C=-1\)

DẤU = XẢY RA KHI\(\left(2x+4\right)^2=0\leftrightarrow x=-2\)

VẬY GTNN CỦA C  LÀ -1 VỚI X=-2

XIN LỖI MÌNH CHỈ BIẾT LÀM 2 CÂU THÔI

7 tháng 7 2018

BÀI 1: 

\(a,x^2-2x-1\)

\(=x^2-2x+1-2\)

\(=\left(x-1\right)^2-2\)

Vì: \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-1\right)^2-2\ge-2\forall x\)

Dấu = xảy ra khi : \(\left(x-1\right)^2=0\Rightarrow x=1\)

Vậy: GTNN của bt là -2 tại x=1

\(b,4x^2+4x-5\)

\(=4x^2+4x+1-6\)

\(=\left(2x+1\right)^2-6\)

Vì: \(\left(2x+1\right)^2\ge0\forall x\)

\(\Rightarrow\left(2x+1\right)^2-6\ge-6\forall x\)

Dấu = xảy ra khi \(\left(2x+1\right)^2=0\Rightarrow x=-\frac{1}{2}\)

VậyGTNN của bt là -6 tại x=-1/2

BÀI 2:

\(a,2x-x^2-4\)

\(=-x^2+2x-4\)

\(=-x^2+2x-1-3\)

\(=-\left(x^2-2x+1\right)-3\)

\(=-\left(x-1\right)^2-3\)

Vì: \(-\left(x-1\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-1\right)^2-3\le-3\forall x\)

Dấu = xảy ra khi : \(-\left(x-1\right)^2=0\Rightarrow x=1\)

Vậy GTLN của bt là -3 tại x=1

b,mk chưa nghĩ ra,lúc nào mk nghĩ ra sẽ gửi lời giải cho bn

7 tháng 7 2018

1)

a) Đặt \(A=x^2-2x+1\) 

\(\Rightarrow A=x^2-2x-1=\left(x^2-2.x.1+1^2\right)-2=\left(x-1\right)^2-2\)

Ta có: \(\left(x-1\right)^2\ge0\forall x\Rightarrow\left(x-1\right)^2-2\ge2\forall x\)

\(A=2\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy \(A_{min}=2\Leftrightarrow x=1\)

Câu b tương tự

2)

a) Đặt \(B=2x-x^2-4\)

 \(B=2x-x^2-4=-\left(x^2-2x+1\right)-3=-\left(x-1\right)^2-3\)

Ta có: \(\left(x-1\right)^2\ge0\forall x\Rightarrow-\left(x-1\right)^2\le0\forall x\Rightarrow-\left(x-1\right)^2-3\le-3\forall x\)

\(B=-3\Leftrightarrow-\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy\(B_{max}=-3\Leftrightarrow x=1\)

b) Đặt \(C=-x^2-4\)

Ta có: \(x^2\ge0\forall x\Rightarrow-x^2\ge0\forall x\Rightarrow-x^2-4\le-4\forall x\)

\(C=-4\Leftrightarrow-x^2=0\Leftrightarrow x=0\)

Vậy \(C_{max}=-4\Leftrightarrow x=0\)

5 tháng 7 2017

a, \(x^2-2x+3=x^2-x-x+1+2=\left(x-1\right)^2+2\)

Với mọi giá trị của \(x\in R\) ta có:

\(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+2\ge2\)

với mọi giá trị của \(x\in R\).

Để \(\left(x-1\right)^2+2=2\) thì

\(\left(x-1\right)^2=0\Rightarrow x=1\)

Câu c tương tự.

b, \(4x^2+12x-5=4x^2+6x+6x+9-14=\left(2x+3\right)^2-14\)

Với mọi giá trị của \(x\in R\) ta có:

\(\left(2x+3\right)^2\ge0\Rightarrow\left(2x+3\right)^2-14\ge-14\)

với mọi giá trị của \(x\in R\).

Để \(\left(2x+3\right)^2-14=-14\) thì

\(\left(2x+3\right)^2=0\Rightarrow2x+3=0\Rightarrow x=-\dfrac{3}{2}\)

Vậy.......................

Câu d tương tự.

Chúc bạn học tốt!!!

12 tháng 8 2016

làm giúp 1 câu ,bn muốn làm câu nào? cho biết

13 tháng 8 2016

B=(2x+1).(2x-3)-4

NV
22 tháng 1

Đặt \(x-1=t\Rightarrow x=t+1\)

\(A=\dfrac{2\left(t+1\right)^2-6\left(t+1\right)+5}{t^2}=\dfrac{2t^2-2t+1}{t^2}=\dfrac{1}{t^2}-\dfrac{2}{t}+2=\left(\dfrac{1}{t}-1\right)^2+1\ge1\)

\(A_{min}=1\) khi \(t=1\Rightarrow x=2\)

1 tháng 7 2019

Tìm GTLN:

\(A=-x^2+6x-15\)

\(=-\left(x^2-6x+15\right)\)

\(=-\left(x^2-2.x.3+9+6\right)\)

\(=-\left(x+3\right)^2-6\le0\forall x\)

Dấu = xảy ra khi: 

   \(x-3=0\Leftrightarrow x=3\)

Vậy Amax = - 6 tại x = 3

Tìm GTNN :

\(A=x^2-4x+7\)

\(=x^2+2.x.2+4+3\)

\(=\left(x+2\right)^2+3\ge0\forall x\)

Dấu = xảy ra khi:

   \(x+2=0\Leftrightarrow x=-2\)

Vậy Amin = 3 tại x = - 2

Các câu còn lại làm tương tự nhé... :)

2 tháng 7 2019

giải hết i

21 tháng 7 2021

`A=(2x)^2+2.2x.1+1^2+1=(2x+1)^2+1`

`=> A_(min)=1 <=>x=-1/2`

`B=(\sqrt2x)^2-2.\sqrt2 x . \sqrt2/2 + (\sqrt2/2)^2 + 1/2`

`=(\sqrt2x-\sqrt2/2)^2+1/2`

`=> B_(min)=1/2 <=> x=1/2`

`C=-(x^2-2.x.3+3^2+6)=-(x-3)^2-6`

`=> C_(max)=-6 <=> x=3`