Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cauchy :
\(\frac{\left(x+16\right)\left(x+9\right)}{x}=\frac{x^2+25x+144}{x}=x+\frac{144}{x}+25\ge2\sqrt{x.\frac{144}{x}}+25=49\)
Đẳng thức xảy ra khi \(x=12\)
Vậy ...............................................
Cách làm của bạn Hoàng Lê Bảo Ngọc nha bạn
Mình chắc chắn luôn
Thank you
b/ Ko biết yêu cầu
4/ \(E=\frac{x^2}{3}+\frac{x^2}{3}+\frac{x^2}{3}+\frac{1}{x^3}+\frac{1}{x^3}\ge5\sqrt[5]{\frac{x^6}{27x^6}}=\frac{5}{\sqrt[5]{27}}\)
Dấu "=" xảy ra khi \(\frac{x^2}{3}=\frac{1}{x^3}\Leftrightarrow x=\sqrt[5]{3}\)
\(F=x+\frac{1}{x^2}=\frac{x}{2}+\frac{x}{2}+\frac{1}{x^2}\ge3\sqrt[3]{\frac{x^2}{4x^2}}=\frac{3}{\sqrt[3]{4}}\)
Dấu "=" xảy ra khi \(\frac{x}{2}=\frac{1}{x^2}\Rightarrow x=\sqrt[3]{2}\)
6/ \(Q=\frac{\left(x+1\right)^2+16}{2\left(x+1\right)}=\frac{x+1}{2}+\frac{8}{x+1}\ge2\sqrt{\frac{8\left(x+1\right)}{2\left(x+1\right)}}=4\)
Dấu "=" xảy ra khi \(\frac{x+1}{2}=\frac{8}{x+1}\Leftrightarrow x=3\)
7/
\(R=\frac{\left(\sqrt{x}+3\right)^2+25}{\sqrt{x}+3}=\sqrt{x}+3+\frac{25}{\sqrt{x}+3}\ge2\sqrt{\frac{25\left(\sqrt{x}+3\right)}{\sqrt{x}+3}}=10\)
Dấu "=" xảy ra khi \(\sqrt{x}+3=\frac{25}{\sqrt{x}+3}\Leftrightarrow x=4\)
8/
\(S=x^2+\frac{2000}{x}=x^2+\frac{1000}{x}+\frac{1000}{x}\ge3\sqrt[3]{\frac{1000^2x^2}{x^2}}=300\)
Dấu "=" xảy ra khi \(x^2=\frac{1000}{x}\Leftrightarrow x=10\)
1. Ta có : \(A=\frac{\left(x+4\right)\left(x+9\right)}{x}=\frac{x^2+13x+36}{x}=x+\frac{36}{x}+13\)
Áp dụng bđt Cauchy : \(x+\frac{36}{x}\ge2\sqrt{x.\frac{36}{x}}=12\)
\(\Rightarrow A\ge25\)
Vậy Min A = 25 \(\Leftrightarrow\begin{cases}x>0\\x=\frac{36}{x}\end{cases}\) \(\Leftrightarrow x=6\)
2. \(B=\frac{\left(x+100\right)^2}{x}=\frac{x^2+200x+100^2}{x}=x+\frac{100^2}{x}+200\)
Áp dụng bđt Cauchy : \(x+\frac{100^2}{x}\ge2\sqrt{x.\frac{100^2}{x}}=200\)
\(\Rightarrow B\ge400\)
Vậy Min B = 400 \(\Leftrightarrow\begin{cases}x>0\\x=\frac{100^2}{x}\end{cases}\) \(\Leftrightarrow x=100\)
Ta có: \(P=\frac{4}{x}+\frac{9}{y}+\frac{16}{z}=\frac{2^2}{x}+\frac{3^2}{y}+\frac{4^2}{z}\)
Áp dụng bất đẳng thức Swarchz cho 3 số:
\(\Rightarrow P\ge\frac{\left(2+3+4\right)^2}{x+y+z}=\frac{81}{x+y+z}\)
Thay \(x+y+z=6\Rightarrow P\ge\frac{81}{6}=\frac{27}{2}\)
\(\Rightarrow Min_P=\frac{27}{2}.\)Dấu "=" xảy ra khi \(x=y=z=2\).
Dấu " = " xảy ra \(\Leftrightarrow x=\frac{4}{3};y=2;z=\frac{8}{3}\)
\(A=\frac{\left(x+4\right)\left(x+9\right)}{x}\left(x>0\right)\)
\(\Leftrightarrow Ax=x^2+13x+36\)
\(\Leftrightarrow x^2+x\left(13-A\right)+36=0\left(1\right)\)
Đế pt có nghiệm \(\Leftrightarrow\Delta\ge0\)
\(\Leftrightarrow\left(13-A\right)^2-4.36\ge0\)
\(\Leftrightarrow\left(13-A\right)^2-12^2\ge0\)
\(\Leftrightarrow\left(13-A-12\right)\left(13-A+12\right)\ge0\)
\(\Leftrightarrow\left(1-A\right)\left(25-A\right)\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}A\le1\\A\ge25\end{cases}}\)
Với \(A=25\) ta tìm được \(x=6\)
Vậy GTNN của A là 25 khi \(x=6\)
Chúc bạn học tốt !!!
a) \(=x+4+\frac{25}{x+4}-4\). x>-4 => x+4>0. => 25/x+4 >0
áp dụng bđt cosi cho 2 số dương ta có: \(x+4+\frac{25}{x+4}\ge2\sqrt{\left(x+4\right).\frac{25}{x+4}}=2\sqrt{25}=10\Rightarrow x+4+\frac{25}{x+4}-4\ge10-4=6\)
=> GTNN=6 <=> x=1
b) ĐK: x>=0, x khác 9
\(A=\frac{x-9+25}{\sqrt{x}+3}=\sqrt{x}-3+\frac{25}{\sqrt{x}+3}=\sqrt{x}+3+\frac{25}{\sqrt{x}+3}-6\)
tương tự ở trên để c/m 2 số dương rồi áp dụng bđt cosi \(A\ge2\sqrt{5}-6=4\)=> Min =4 <=> x=4
nếu vẫn k làm đc thì liên hệ mình mình giải nốt cho nha.
c) gọi là B đi. B=|x-3|+|x-5|
ta sẽ có bảng xét dấu:
Nếu \(x\le3\) <=> B=-x+3-x+5=-2x+8
x=<3 <=>-2x>-6 <=> -2x+8>2 <=> B>=2
Nếu 3<x<5 => B=x+3-x+5=0x+15=15=> B=15
Nếu x>=5=> B=x+3+x+5=2x+8
x>=5 <=> 2x>10 <=>2x+8>=18 <=> B>=18
=> Min B=2 <=> x=3
nhớ LI KE
a)\(x+\frac{25}{x+4}=x+4+\frac{25}{x+4}-4\ge2\sqrt{\left(x+4\right).\frac{25}{x+4}}-4\)(Cô-si)
\(=2.5-4=6\)
Vậy: GTNN là 6 \(\Leftrightarrow x+4=\frac{25}{x+4}\Leftrightarrow x=1\)(do x >-4)
b)\(A=\frac{x-9+25}{\sqrt{x}+3}=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)+25}{\sqrt{x}+3}=\sqrt{x}-3+\frac{25}{\sqrt{x}+3}\)
\(=\sqrt{x}+3+\frac{25}{\sqrt{x}+3}-6\ge2\sqrt{\left(\sqrt{x}+3\right).\frac{25}{\sqrt{x}+3}}-6=2.5-6=4\)
Vậy: A min = 4 <=> x = 4
c) Áp dụng bdt: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
Dấu "=" xảy ra \(\Leftrightarrow ab\ge0\)
Ta có: \(\left|x-3\right|+\left|x-5\right|=\left|3-x\right|+\left|x-5\right|\ge\left|3-x+x-5\right|=2\)
\("="\Leftrightarrow\left(3-x\right)\left(x-5\right)\ge0\Leftrightarrow3\le x\le5\)
Áp dụng BĐT Cauchy :
\(\frac{\left(x+16\right)\left(x+9\right)}{x}=\frac{x^2+25x+144}{x}=x+\frac{144}{x}+25\ge2\sqrt{x.\frac{144}{x}}+25=49\)
Đẳng thức xảy ra khi \(x=12\)
Vậy ...............................................