Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(a.\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}=\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}=\sqrt{5}+1+\sqrt{5}-1=2\sqrt{5}\)
\(b.\sqrt{3+2\sqrt{2}}+\sqrt{6-4\sqrt{2}}=\sqrt{\left(\sqrt{2}+1\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}=\sqrt{2}+1+2-\sqrt{2}=3\)\(c.\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}=\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}=3+\sqrt{2}-3+\sqrt{2}=2\sqrt{2}\)
\(d.\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}=\dfrac{\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}}{\sqrt{2}}=\dfrac{\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}}{\sqrt{2}}=\dfrac{\sqrt{5}+1-\sqrt{5}+1}{\sqrt{2}}=\dfrac{2}{\sqrt{2}}=\sqrt{2}\)
2.
\(a.x-1=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)
\(b.x+5\sqrt{x}+6=x+2\sqrt{x}+3\sqrt{x}+6=\sqrt{x}\left(\sqrt{x}+2\right)+3\left(\sqrt{x}+2\right)=\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)\)( mạo danh sửa đề)
\(c.x-4=\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\)
\(1a.\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}=\sqrt{5+2\sqrt{5}+1}+\sqrt{5-2\sqrt{5}+1}=\sqrt{5}+1+\sqrt{5}-1=2\sqrt{5}\)
\(b.\sqrt{3+2\sqrt{2}}+\sqrt{6-4\sqrt{2}}=\sqrt{2+2\sqrt{2}+1}+\sqrt{4-2.2\sqrt{2}+2}=\sqrt{2}+1+2-\sqrt{2}=3\)\(c.\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}=\sqrt{9+2.3\sqrt{2}+2}-\sqrt{9-2.3\sqrt{2}+2}=3+\sqrt{2}-3+\sqrt{2}=2\sqrt{2}\)\(d.\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}=\dfrac{\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}}{\sqrt{2}}=\dfrac{\sqrt{5+2\sqrt{5}+1}-\sqrt{5-2\sqrt{5}+1}}{\sqrt{2}}=\dfrac{\sqrt{5}+1-\sqrt{5}+1}{\sqrt{2}}=\sqrt{2}\)\(2a.x-1=\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\)
\(b.x+5\sqrt{x}+6=x+2\sqrt{x}+3\sqrt{x}+6=\sqrt{x}\left(\sqrt{x}+2\right)+3\left(\sqrt{x}+2\right)=\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)\)
\(c.x-4=\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)\)
c,C= \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\left(x\ge1\right)\)
=\(\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}\)
=\(\sqrt{x-1}+1+\left|\sqrt{x-1}-1\right|\) (1)
TH1: \(\sqrt{x-1}< 1\) hay \(1\le x< 2\)
Từ (1)=>C= \(\sqrt{x-1}+1+1-\sqrt{x-1}\)=2
TH2: \(\sqrt{x-1}\ge1\) hay \(x\ge2\)
Từ (1) =>C=\(\sqrt{x-1}+1+\sqrt{x-1}-1\)=\(2\sqrt{x-1}\)
d, D=\(\sqrt{13+30\sqrt{2}+\sqrt{9+4\sqrt{2}}}=\sqrt{13+30\sqrt{2}+\sqrt{8+2\sqrt{8}+1}}=\sqrt{13+30\sqrt{2}+\sqrt{\left(\sqrt{8}+1\right)^2}}\)
=\(\sqrt{13+30\sqrt{2}+\sqrt{8}+1}=\sqrt{14+30\sqrt{2}+2\sqrt{2}}\)
=\(\sqrt{14+32\sqrt{2}}\)
a)\(\frac{x-y}{\sqrt{x}-\sqrt{y}}=\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}=\sqrt{x}+\sqrt{y}\)
b)\(\frac{x-2\sqrt{x}+1}{\sqrt{x}-1}=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}=\sqrt{x}-1\)
a: \(=\sqrt{4+2+\sqrt{3}}=\sqrt{6+\sqrt{3}}\)
c: \(=\sqrt{13+30\sqrt{2+2\sqrt{2}+1}}\)
\(=\sqrt{13+30\left(\sqrt{2}+1\right)}\)
\(=\sqrt{43+30\sqrt{2}}\)
d: \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)
\(=\left|\sqrt{x-1}+1\right|+\left|\sqrt{x-1}-1\right|\)
\(=\sqrt{x-1}+1+\left|\sqrt{x-1}-1\right|\)
TH1: x>=2
\(D=\sqrt{x-1}+1+\sqrt{x-1}-1=2\sqrt{x-1}\)
TH2: 0<=x<2
\(D=\sqrt{x-1}+1+1-\sqrt{x-1}=2\)
Bài 2:Áp dụng BĐT AM-GM ta có:
\(\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{xy}}\)
\(\frac{1}{y}+\frac{1}{z}\ge2\sqrt{\frac{1}{yz}}\)
\(\frac{1}{x}+\frac{1}{z}\ge2\sqrt{\frac{1}{xz}}\)
CỘng theo vế 3 BĐT trên có:
\(2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge2\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\right)\)
Khi x=y=z
Ta có: \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}\)
\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)
\(\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{100}}\)
\(..........................\)
\(\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}}\)
\(\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)
Cộng theo vế ta có:
\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}>\frac{1}{10}+\frac{1}{10}+...+\frac{1}{10}=\frac{100}{10}=10\)
em mới lớp 6 nên chưa biết
\(B=\sqrt{x-4\sqrt{x}+4}+\sqrt{x-6\sqrt{x}+9}\)
\(=\sqrt{\left(\sqrt{x}-2\right)^2}+\sqrt{\left(\sqrt{x}-3\right)^2}\)
\(=\left|\sqrt{x}-2\right|+\left|3-\sqrt{x}\right|\ge\left|\sqrt{x}-2+3-\sqrt{x}\right|=1\)
Dấu "=" <=> 4 < x < 9