Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt{x^2-2x+1}+\sqrt{\left(x-4\right)^2}+\sqrt{\left(x-6\right)^2}\)
\(=\sqrt{\left(x-1\right)^2}+\left|x-4\right|+\left|x-6\right|\)
\(=\left|x-1\right|+\left|x-4\right|+\left|x-6\right|\)
\(=\left|x-4\right|+\left(\left|x-1\right|+\left|x-6\right|\right)\)
\(=\left|x-4\right|+\left(\left|x-1\right|+\left|6-x\right|\right)\)
Ta có \(\hept{\begin{cases}\left|x-4\right|\ge0\forall x\\\left|x-1\right|+\left|6-x\right|\ge\left|x-1+6-x\right|=\left|5\right|=5\end{cases}}\)
=> \(\left|x-4\right|+\left(\left|x-1\right|+\left|6-x\right|\right)\ge5\forall x\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-4=0\\\left(x-1\right)\left(6-x\right)\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\1\le x\le6\end{cases}}\Leftrightarrow x=4\)
=> MinA = 5 <=> x = 4
Ta có: \(A=\sqrt{x^2-2x+1}+\sqrt{\left(x-4\right)^2}+\sqrt{\left(x-6\right)^2}\)
\(\Rightarrow A=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-4\right)^2}+\sqrt{\left(x-6\right)^2}\)
\(=\left|x-1\right|+\left|x-4\right|+\left|x-6\right|\)
\(=\left|x-4\right|+\left|x-1\right|+\left|x-6\right|\)
Xét \(\left|x-1\right|+\left|x-6\right|\)ta có:
\(\left|x-1\right|+\left|x-6\right|=\left|x-1\right|+\left|6-x\right|\ge\left|x-1+6-x\right|=\left|5\right|=5\)(1)
Dấu " = " xảy ra \(\Leftrightarrow\left(x-1\right)\left(6-x\right)\ge0\)
TH1: Nếu \(\hept{\begin{cases}x-1< 0\\6-x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 1\\6< x\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 1\\x>6\end{cases}}\)( vô lý )
TH2: Nếu \(\hept{\begin{cases}x-1\ge0\\6-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\6\ge x\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\le6\end{cases}}\Leftrightarrow1\le x\le6\)
mà \(\left|x-4\right|\ge0\)(2)
Từ (1) và (2) \(\Rightarrow A\ge5\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x-4=0\\1\le x\le6\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\1\le x\le6\end{cases}}\Leftrightarrow x=4\)
Vậy \(minA=5\)\(\Leftrightarrow x=4\)
Câu 2:
\(\Delta'=\left(m-1\right)^2-m+3=m^2-3m+4=\left(m-\frac{3}{2}\right)^2+\frac{7}{4}>0;\forall m\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m-3\end{matrix}\right.\)
\(P=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=4\left(m-1\right)^2-2\left(m-3\right)\)
\(=4m^2-10m+10=4\left(m-\frac{5}{4}\right)^2+\frac{15}{4}\ge\frac{15}{4}\)
\(\Rightarrow P_{min}=\frac{15}{4}\) khi \(m=\frac{5}{4}\)
Câu 1:
Để pt có 2 nghiệm \(\left\{{}\begin{matrix}m\ne0\\\Delta'=\left(m-2\right)^2-m\left(m-3\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\-m+4\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne0\\m\le4\end{matrix}\right.\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\frac{2\left(m-2\right)}{m}\\x_1x_2=\frac{m-3}{m}\end{matrix}\right.\)
\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=\frac{4\left(m-2\right)^2}{m^2}-\frac{2\left(m-3\right)}{m}=\frac{4m^2-8m+4}{m^2}-\frac{2m-6}{m}\)
\(=4-\frac{8}{m}+\frac{4}{m^2}-2+\frac{6}{m}=\frac{4}{m^2}-\frac{2}{m}+2\)
\(=4\left(\frac{1}{m}-\frac{1}{4}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)
\(A_{min}=\frac{7}{4}\) khi \(\frac{1}{m}=\frac{1}{4}\Leftrightarrow m=4\)
Xét \(\Delta=\left(2m-1\right)^2-8\left(m-1\right)=4m^2-12m+9=\left(2m-3\right)^2\ge0\)
=> PT luôn có 2 nghiệm x1,x2 với mọi m
Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=\frac{1-2m}{2}\\x_1x_2=\frac{m-1}{2}\end{cases}}\)
\(\Rightarrow A=\left(x_1+x_2\right)^2-3x_1x_2=\left(\frac{1-2m}{2}\right)^2-\frac{3\left(m-1\right)}{2}\)
\(=\frac{1-4m+4m^2-6m+6}{4}=\frac{4m^2-10m+7}{4}\)
\(=\frac{\left(2m-\frac{5}{2}\right)^2+\frac{3}{4}}{4}\ge\frac{3}{16}\)
Dấu "=" xảy ra khi \(2m=\frac{5}{2}\Rightarrow m=\frac{5}{4}\Rightarrow\frac{a}{b}=\frac{5}{4}\)
\(\Rightarrow4a=5b\Rightarrow2a=\frac{5b}{2}\)
lúc đó \(P=\frac{5b}{2}+2b=\frac{9b}{2}\)
\(A=\frac{x^4+2x^2+25}{4x^2}=\frac{x^4+25}{4x^2}+\frac{2x^2}{4x^2}=\frac{x^4+25}{4x^2}+\frac{1}{2}\)
vì \(x^4>=0;25>0\Rightarrow\frac{x^4+25}{4x^2}+\frac{1}{2}>=\frac{2\sqrt{25\cdot x^4}}{4x^2}+\frac{1}{2}=\frac{10x^2}{4x^2}+\frac{1}{2}=\frac{5}{2}+\frac{1}{2}=3\)(bđt cosi)
dấu = xảy ra khi \(x^4=25\Rightarrow x^2=5\Rightarrow x=+-\sqrt{5}\)
vậy min của A là 3 khi x= \(+-\sqrt{5}\)
Với \(m\ne0\) có: \(\Delta'=\left(m-2\right)^2-m\left(m-3\right)=4-m\ge0\Rightarrow m\le4\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=\frac{-2\left(m-2\right)}{m}=-2\left(1-\frac{2}{m}\right)\\x_1x_2=\frac{m-3}{m}=1-\frac{3}{m}\end{matrix}\right.\)
\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=4\left(1-\frac{2}{m}\right)^2-2\left(1-\frac{3}{m}\right)=4\left(\frac{4}{m^2}-\frac{4}{m}+1\right)-2+\frac{6}{m}\)
\(=\frac{16}{m^2}-\frac{10}{m}+2=16\left(\frac{1}{m}-\frac{5}{16}\right)^2+\frac{7}{16}\ge\frac{7}{16}\)
\(A_{min}=\frac{7}{16}\) khi \(\frac{1}{m}=\frac{5}{16}\Leftrightarrow m=\frac{16}{5}< 4\left(t/m\right)\)
\(x^2+x+\frac{1}{x^2}+2x+2=\left(x^2+2+\frac{1}{x^2}\right)+\left(x+1\right)^2-1=\left(x+\frac{1}{x}\right)^2+\left(x+1\right)^2-1\ge-1\)
Vậy giá trị nhỏ nhất của biểu thức trên là -1 khi x=-1.