Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{a)Để C đạt GTNN}\)
\(\Rightarrow\hept{\begin{cases}\left(x+2\right)^2\\\left(y-\frac{1}{5}\right)^2\end{cases}\ge0}\)
\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge0-10\)
\(\Rightarrow C\ge-10\)
\(\text{Vậy minC=-10 khi x=-2;y= }\frac{1}{5}\)
b)\(\text{Để D đạt GTLN}\)
=>(2x-3)2+5 đạt GTNN
Mà (2x-3)2\(\ge\)5
\(\Rightarrow GTLN\)của \(A=\frac{4}{5}\)khi \(x=\frac{3}{2}\)
\(\)bài nào có MIN or MAX thì mk làm,mk ko làm thì có nghĩa là ko có nha
\(D=\left|4x-3\right|+\left|5y+7,5\right|+17,5\)
\(\left\{{}\begin{matrix}\left|4x-3\right|\ge0\\\left|5y+7,5\right|\ge0\end{matrix}\right.\)
\(\Rightarrow\left|4x-3\right|+\left|5y+7,5\right|\ge0\)
\(\Rightarrow\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left|4x-3\right|=0\Rightarrow4x=3\Rightarrow x=\dfrac{3}{4}\\\left|5y+7,5\right|=0\Rightarrow5y=-7,5\Rightarrow y=-1,5\end{matrix}\right.\)
\(\Rightarrow MIN_D=17,5\) khi \(x=\dfrac{3}{4};y=-1,5\)
\(E=4-\left|5x-2\right|-\left|3y+12\right|\)
\(\left\{{}\begin{matrix}\left|5x-2\right|\ge0\\\left|3y+12\right|\ge0\end{matrix}\right.\)
\(\Rightarrow E=4-\left|5x-2\right|-\left|3y+12\right|\le4\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left|5x-2\right|=0\Rightarrow5x=2\Rightarrow x=\dfrac{2}{5}\\\left|3y+12\right|=0\Rightarrow3y=-12\Rightarrow y=-4\end{matrix}\right.\)
\(\Rightarrow MAX_E=4\) khi \(x=\dfrac{2}{5};y=-4\)
\(A=\left(1-x^{2n}\right)+\left(2-y^{2n}\right)\)
Có \(x^{2n}\ge0\);\(y^{2n}\ge0\)
\(\Rightarrow A\le\left(1-0\right)+\left(2-0\right)=3\)
Dấu "=" xảy ra khi x = 0 ; y = 0 với mọi n
Vậy Max A = 3 <=> x = 0 ; y = 0
a) \(\left(x-3\right)^2\ge0\)
\(\Rightarrow\left(x-3\right)^2+2\ge2\)
Dấu " = " khi \(x-3=0\Rightarrow x=3\)
Vậy \(MIN_{\left(x-3\right)^2+2}=2\) khi x = 3
tim gia tri nho nhat cua bieu thuc : \(\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|\)
Để mình giúp nha
\(A=|x-2013|+|x-2014|+|x-2015|\)
\(=|x-2013|+|2014-x|+2015-x|\)
\(\ge|x-2013+2015-x|+|2014-x|\)
\(\ge2+|2014-x|=2\)
Dấu '' = '' xảy ra khi \(\left\{{}\begin{matrix}\left(x-2013\right)\left(2015-x\right)\ge0\\|2014-x|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2013\le x\le2015\\x=2014\end{matrix}\right.\Rightarrow x=2014\)
Ta có: |x−2013|+|x−2014|+|x−2015|=|x−2013|+|x−2014|+|2015-x|=(|x−2013|+|2015-x|)+|x−2014|
Vì |x−2013|+|2015-x|\(\ge\)|x−2013+2015-x|=2
Dấu"=" xảy ra khi (x-2013)(2015-x)\(\ge0\Rightarrow2013\le x\le2015\)
|x−2014|\(\ge0\)
Dấu"=" xảy ra khi x-2014=0\(\Rightarrow x=2014\)
|x−2013|+|x−2014|+|x−2015|\(\ge\)2
Dấu"=" xảy ra khi\(\left\{{}\begin{matrix}2013\le x\le2015\\x=2014\end{matrix}\right.\Rightarrow x=2014\)
Vậy GTNN của |x−2013|+|x−2014|+|x−2015|=2 đạt được khi x=2014
Ta có :
\(C=-\frac{2}{\left|x+4\right|+\left(y-1.3\right)^{104}+18}\)
Ta có : | x + 4 | \(\ge\)0 ; ( y - 1.3 )104 \(\ge\)0
\(\Rightarrow\) | x + 4 | + ( y - 1.3 )104 \(\ge\)0
\(\Rightarrow\)| x + 4 | + ( y - 1.3 )104 + 18 \(\ge\)18
Dấu " = " xảy ra khi \(\hept{\begin{cases}x=0\\y=0\end{cases}}\)
\(\Rightarrow\frac{2}{\left|x+4\right|+\left(y-1.3\right)^{104}+18}\le\frac{2}{18}=\frac{1}{9}\)
\(\Rightarrow\)GTLN của \(\frac{2}{\left|x+4\right|+\left(y-1.3\right)^{104}+18}\)là \(\frac{1}{9}\)
\(\Rightarrow\)\(-\frac{2}{\left|x+4\right|+\left(y-1.3\right)^{104}+18}\)có GTNN của \(\frac{1}{9}\)
Vậy Cmin = \(\frac{1}{9}\)khi \(\hept{\begin{cases}x=0\\y=0\end{cases}}\)