Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`B=(1/(3-sqrtx)-1/(3+sqrtx))*(3+sqrtx)/sqrtx(x>=0,x ne 9)`
`B=((3+sqrtx)/(9-x)-(3-sqrtx)/(9-x))*(3+sqrtx)/sqrtx`
`B=((3+sqrtx-3+sqrtx)/(9-x))*(3+sqrtx)/sqrtx`
`B=(2sqrtx)/((3-sqrtx)(3+sqrtx))*(3+sqrtx)/sqrtx`
`B=2/(3-sqrtx)`
`B>1/2`
`<=>2/(3-sqrtx)-1/2>0`
`<=>(4-3+sqrtx)/[2(3-sqrtx)]>0`
`<=>(sqrtx+1)/(2(3-sqrtx))>0`
Mà `sqrtx+1>=1>0`
`<=>2(3-sqrtx)>0`
`<=>3-sqrtx>0`
`<=>sqrtx<3`
`<=>x<9`
ĐKXĐ: \(x\ge0;x\ne9\)
\(B=\left(\dfrac{1}{\sqrt{x}+3}+\dfrac{3}{x-9}\right):\dfrac{1}{\sqrt{x}-3}\)
\(=\left[\dfrac{\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right]:\dfrac{1}{\sqrt{x}-3}\)
\(=\dfrac{\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\dfrac{\sqrt{x}-3}{1}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}+3}\)
ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >9\end{matrix}\right.\)
\(B=\dfrac{\sqrt{x}-3+3}{x-9}\cdot\left(\sqrt{x}-3\right)=\dfrac{\sqrt{x}}{\sqrt{x}+3}\)
\(A=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)\)
\(A=\left(x^2+5x+4\right)\left(x^2+5x+6\right)\)
\(A=\left(x^2+5x+4\right)\left(x^2+5x+4+2\right)\)
\(A=\left(x^2+5x+4\right)^2+2\left(x^2+5x+4\right)\)
\(A=\left(x^2+5x+4\right)^2+2\left(x^2+5x+4\right)+1-1\)
\(A=\left(x^2+5x+5\right)^2-1\ge-1\)
\(A_{min}=-1\) khi \(x^2+5x+5=0\)
\(B=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}+1}\right):\dfrac{x+1}{x-1}=\dfrac{\sqrt{x}+1-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{x-1}{x+1}\)
\(=\dfrac{2}{x-1}.\dfrac{x-1}{x+1}=\dfrac{2}{x+1}\)
Để \(B< 1\Rightarrow\dfrac{2}{x+1}< 1\Rightarrow1-\dfrac{2}{x+1}>0\Rightarrow\dfrac{x-1}{x+1}>0\)
mà \(x+1>0\left(x\ge0\right)\Rightarrow x-1>0\Rightarrow x>1\)
Lời giải:
\(B=\frac{3}{x-1}\sqrt{\frac{(x-1)^2}{(3x)^2}}=\frac{3}{x-1}|\frac{x-1}{3x}|\)
\(=\frac{3}{x-1}.\frac{1-x}{3x}=\frac{-1}{x}\)
\(=>B=\dfrac{\left(\sqrt{x}-1\right)\sqrt{x}-5\sqrt{x}+8}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(B=\dfrac{x-\sqrt{x}-5\sqrt{x}+8}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{x-6\sqrt{x}+8}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(B=\dfrac{\left(\sqrt{x}-4\right)\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}-4}{\sqrt{x}}\)
Ta có: \(B=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}-\dfrac{5\sqrt{x}-8}{x-2\sqrt{x}}\)
\(=\dfrac{x-\sqrt{x}-5\sqrt{x}+8}{\sqrt{x}\cdot\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x-6\sqrt{x}+8}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}-4}{\sqrt{x}-2}\)
Đk:\(x>0;x\ne1\)
\(B=\left[\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]:\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(x-1\right)}\)
\(=\dfrac{\sqrt{x}+1+\sqrt{x}.\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{1}{\sqrt{x}-1}\)
\(B=\dfrac{1}{2}\Leftrightarrow\dfrac{1}{\sqrt{x}-1}=\dfrac{1}{2}\Leftrightarrow\sqrt{x}-1=2\)\(\Leftrightarrow x=9\) (tm)
Vậy..
a) \(B=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{\sqrt{x}}{x-1}\right):\dfrac{x\sqrt{x}-1}{x\sqrt{x}-\sqrt{x}}\)
\(B=\dfrac{\sqrt{x}+1+x}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(B=\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(B=\dfrac{1}{\sqrt{x}-1}\)
b) Với \(B=\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{1}{\sqrt{x}-1}=\dfrac{1}{2}\Leftrightarrow\sqrt{x}-1=2\)
\(\Leftrightarrow\sqrt{x}=3\)
\(\Leftrightarrow x=9\)
Vậy...
Chúc bạn học tốt
\(B=x\left(x-3\right)\left(x+1\right)\left(x+4\right)\)
\(B=\left[x\left(x+1\right)\right]\left[\left(x-3\right)\left(x+4\right)\right]\)
\(B=\left(x^2+x\right)\left(x^2+x-12\right)\)
Đặt \(x^2+x=a\)ta được;
\(B=a\left(a-12\right)=a^2-12a=\left(a^2-2.a.6+36\right)-36\)\(=\left(a-6\right)^2-36\)
Vì \(\left(a-6\right)^2\ge0\)\(\Rightarrow\left(a-6\right)^2-36\ge-36\)
Dấu ''='' xảy ra khi \(a-6=0\Rightarrow a=6\Rightarrow x^2+x-6=0\)\(\Rightarrow\left(x^2+3x\right)-\left(2x+6\right)=0\)
\(\Rightarrow x\left(x+3\right)-2\left(x+3\right)=0\)\(\Rightarrow\left(x+3\right)\left(x-2\right)=0\)\(\Rightarrow\orbr{\begin{cases}x+3=0\\x-2=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-3\\x=2\end{cases}}\)
Vậy GTNN của B là B=-36 khi x=-3 hoặc x=2