Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$|x+2,8|\geq 0$ với mọi $x$ theo tính chất trị tuyệt đối
$\Rightarrow B=|x+2,8|-3,5\geq 0-3,5=-3,5$
Vậy $B_{\min}=-3,5$ khi $x+2,8=0\Leftrightarrow x=-2,8$
\(A=\left(x-3,5\right)^2+1\)
Vì \(\left(x-3,5\right)^2\ge0\)
=> \(\left(x-3,5\right)^2+1\ge1\)
Vậy GTNN của A là 1 khi x=3,5
\(B=\left(2x-3\right)^4-2\)
Vì \(\left(2x-3\right)^4\ge0\)
=> \(\left(2x-3\right)^4-2\ge-2\)
Vậy GTNN của B là -2 khi x=\(\frac{3}{2}\)
\(C=2-x^2=-x^2+2\)
Vì \(x^2\ge0\)
=> \(-x^2\le0\)
=>\(-x^2+2\le2\)
Vậy GTLN của C là 2 khi x=0
\(D=-\left(x-3\right)^2+1\)
Vì \(\left(x-3\right)^2\ge0\)
=> \(-\left(x-3\right)^2\le0\)
=>\(-\left(x-3\right)+1\le1\)
Vậy GTLN của D là 1 khi x=3
\(A=\dfrac{5x^2+3y^2}{10x^2-3y^2}\)Thay \(\dfrac{x}{3}=\dfrac{y}{5}=k\Rightarrow x=3k;y=5k\)vào ta đc
\(A=\dfrac{5.9k^2+3.25k^2}{10.9k^2-3.25k^2}=\dfrac{120k^2}{15k^2}=8\)
Tìm GTNN của biểu thức
d, \(D=|x+5|+|x+17|\)
g, \(G=|x+\frac{1}{2}|+|x+\frac{1}{3}|+|x+\frac{1}{4}|\)
Câu hỏi của đào mai thu - Toán lớp 7 - Học toán với OnlineMath
eM THAM khảo nhé!
mày thích chết không
SAO CHỬI MÌNH ?