\(A=3\left(x-4\right)^{2018}+\left|3y+5\right|+2018^0\)

<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2018

\(2018^0à?\)

\(A=3\left(x-4\right)^{2018}+\left|3y+5\right|+1\)

Do \(3\left(x-4\right)^{2018}\ge0;\left|3y+5\right|\ge0\forall x,y\)

Nên \(A=3\left(x-4\right)^{2018}+\left|3y+5\right|+1\ge1với\forall x,y\)

Dấu = xảy ra khi \(\hept{\begin{cases}x-4=0\\3y+5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=-\frac{5}{3}\end{cases}}}\)

7 tháng 10 2018

ai nhanh minh

13 tháng 3 2018

Đặt: \(\left|x-2017\right|=t\ge0\) ta có: \(l=\frac{t+2017}{t+2018}=\frac{t+2018-1}{t+2018}=1-\frac{1}{t+2018}\ge1-\frac{1}{2018}=\frac{2017}{2018}\)

Dấu "=" xảy ra khi: \(t=0\Leftrightarrow x=2017\)

14 tháng 3 2018

Đặt: |x−2017|=t≥0 ta có: l=t+2017t+2018 =t+2018−1t+2018 =1−1t+2018 ≥1−12018 =20172018 

Dấu "=" xảy ra khi: t=0⇔x=2017

 ...

..

6 tháng 3 2020

\(A=\frac{\left|x-2017\right|+2018}{\left|x-2017\right|+2019}\)

\(A=\frac{\left|x-2017\right|+2019-1}{\left|x-2017\right|+2019}\)

\(A=1-\frac{1}{\left|x-2017\right|+2019}\)

A nhỏ nhất khi \(1-\frac{1}{\left|x-2017\right|+2019}\)nhỏ nhất

khi \(\frac{1}{\left|x-2017\right|+2019}\)lớn nhất

khi \(\left|x-2017\right|+2019\)nhỏ nhất

mà |x - 2017| \(\ge0\)

=> |x - 2017| + 2019 \(\ge2019\)

Vậy A nhỏ nhất khi A = 2019 khi x - 2017 = 0 => x = 2017

6 tháng 3 2020

\(A=\frac{\backslash x-2017\backslash+2018}{\backslash x-2017\backslash+2019}\) 

\(A=\frac{2018}{2019}\)

9 tháng 10 2018

Ta có: \(\left(\left|x-3\right|+2\right)^2\ge0\forall x\) không âm

\(\left|y+3\right|\ge3\forall y\) không âm

Cộng theo vế 2 BĐT trên ta có:

\(A=\left(\left|x-3\right|+2\right)^2+\left|y+3\right|+2018\ge0+3+2018=2021\)

Vậy \(A_{min}=2021\Leftrightarrow\hept{\begin{cases}\left(\left|x-3\right|+2\right)^2=0\\\left|y+3\right|=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=0\end{cases}}}\)

30 tháng 9 2017

\(A=\left|x-1004\right|-\left|x+1003\right|\)

Áp dụng BĐT \(\left|a\right|-\left|b\right|\le\left|a-b\right|\)

\(\Leftrightarrow\left|x-1004\right|-\left|x+1003\right|\le\left|x-1004-x-1003\right|\)

\(\Leftrightarrow\left|x-1004\right|-\left|x+1003\right|\le2007\)

Vậy GTLN của A là 2007. Dấu "=" xảy ra khi \(x\ge1004\) hoặc \(x\le1003\).

30 tháng 9 2017

- Câu B dùng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) làm tương tự nhé bạn!

Bài 1:

Ta có: \(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\) và x,y,z≠0

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)

Do đó:

\(\left\{{}\begin{matrix}\frac{x}{y}=1\\\frac{y}{z}=1\\\frac{z}{x}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y\\y=z\\z=x\end{matrix}\right.\Leftrightarrow x=y=z\)

Ta có: \(x^{2018}-y^{2019}=0\)

mà x=y(cmt)

nên \(x^{2018}-x^{2019}=0\)

\(\Leftrightarrow x^{2018}\left(1-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^{2018}=0\\1-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=1\end{matrix}\right.\)

Vậy: x=y=z=1

Bài 2:

Ta có: \(\left(x+5\right)^2\ge0\forall x\)

\(\Rightarrow-\left(x+5\right)^2\le0\forall x\)

Ta có: \(\left|x-y+1\right|\ge0\forall x,y\)

\(\Rightarrow-\left|x-y+1\right|\le0\forall x,y\)

Do đó: \(-\left(x+5\right)^2-\left|x-y+1\right|\le0\forall x,y\)

\(\Rightarrow-\left(x+5\right)^2-\left|x-y+1\right|+2018\le2018\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}\left(x+5\right)^2=0\\\left|x-y+1\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+5=0\\x-y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-5\\-5-y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-5\\-4-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=-4\end{matrix}\right.\)

Vậy: Giá trị lớn nhất của biểu thức \(P=-\left(x+5\right)^2-\left|x-y+1\right|+2018\) là 2018 khi x=-5 và y=-4

21 tháng 3 2020

CẢM ƠN BN NHÌU NHA