Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c ) \(C=\left(x^2-3x+1\right)\left(x^2-3x+1\right)=\left(x^2-3x+1\right)^2\ge0\forall x\)
Dấu " = " xảy ra \(\Leftrightarrow x^2-3x+1=0\)
\(\Leftrightarrow x^2-3x+\dfrac{9}{4}-\dfrac{5}{4}=0\)
\(\Leftrightarrow\left(x-\dfrac{3}{2}\right)^2=\dfrac{5}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{3}{2}=\dfrac{\sqrt{5}}{2}\\x-\dfrac{3}{2}=\dfrac{-\sqrt{5}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{5}+3}{2}\\x=\dfrac{3-\sqrt{5}}{2}\end{matrix}\right.\)
Vậy Min C là : \(0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{5}+3}{2}\\x=\dfrac{3-\sqrt{5}}{2}\end{matrix}\right.\)
d ) \(D=\left(x^2-4x+1\right)\left(x^2-4x+5\right)\)
\(=\left(x^2-4x+3-2\right)\left(x^2-4x+3+2\right)\)
\(=\left(x^2-4x+3\right)^2-4\ge-4\forall x\)
Dấu " = " xảy ra \(\Leftrightarrow x^2-4x+3=0\)
\(\Leftrightarrow x^2-3x-x+3=0\)
\(\Leftrightarrow x\left(x-3\right)-\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
Vậy Min D là : \(-4\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
1/
a, \(A=4x^2-4x+5=4x^2-4x+1+4=\left(2x-1\right)^2+4\ge4\)
Dấu "=" xảy ra khi x=1/2
Vậy Amin=4 khi x=1/2
b, \(B=3x^2+6x-1=3\left(x^2+2x+1\right)-4=3\left(x+1\right)^2-4\ge-4\)
Dấu "=" xảy ra khi x=-1
Vậy Bmin = -4 khi x=-1
2/
a, \(A=10+6x-x^2=-\left(x^2-6x+9\right)+19=-\left(x-3\right)^2+19\le19\)
Dấu "=" xảy ra khi x=3
Vậy Amax = 19 khi x=3
b, \(B=7-5x-2x^2=-2\left(x^2-\frac{5}{2}x+\frac{25}{16}\right)+\frac{31}{8}=-2\left(x-\frac{5}{4}\right)^2+\frac{31}{8}\le\frac{31}{8}\)
Dấu "=" xảy ra khi x=5/4
Vậy Bmax = 31/8 khi x=5/4
A = x2 - 3x + 5 ( x2 chứ nhể )
= ( x2 - 3x + 9/4 ) + 11/4
= ( x - 3/2 )2 + 11/4 ≥ 11/4 ∀ x
Dấu "=" xảy ra <=> x = 3/2
=> MinA = 11/4 <=> x = 3/2
B = ( 2x - 1 )2 + ( x + 2 )2
= 4x2 - 4x + 1 + x2 + 4x + 4
= 5x2 + 5 ≥ 5 ∀ x
Dấu "=" xảy ra khi x = 0
=> MinB = 5 <=> x = 0
Bài 1
a) \(A=\left(x+1\right)\left(2x-1\right)=2x^2+x-1=2\left(x^2+\frac{x}{2}-\frac{1}{2}\right)=2\left(x^2+2.\frac{1}{4}.x+\frac{1}{16}-\frac{9}{16}\right)\)\(=2\left[\left(x+\frac{1}{4}\right)^2-\frac{9}{16}\right]=2\left(x+\frac{1}{4}\right)^2-\frac{9}{8}\)
Vì \(\left(x+\frac{1}{4}\right)^2\ge0\Rightarrow2\left(x+\frac{1}{4}\right)^2\ge0\Rightarrow2\left(x+\frac{1}{4}\right)^2-\frac{9}{8}\ge-\frac{9}{8}\)
Dấu "=" xảy ra khi \(\left(x+\frac{1}{4}\right)^2=0\Leftrightarrow x+\frac{1}{4}=0\Leftrightarrow x=-\frac{1}{4}\)
Vậy minA=-9/8 khi x=-1/4
b)\(B=4x^2-4xy+2y^2+1=\left(4x^2-4xy+y^2\right)+y^2+1=\left(2x-y\right)^2+y^2+1\)
Vì \(\hept{\begin{cases}\left(2x-y\right)^2\ge0\\y^2\ge0\end{cases}}\)=>\(\left(2x-y\right)^2+y^2\ge0\Rightarrow B=\left(2x-y\right)^2+y^2+1\ge1\)
Dấu "=" xảy ra khi (2x-y)2=y2=0 <=> 2x-y=y=0 <=> x=y=0
Vậy minB=1 khi x=y=0
lý luận tương tự bài 1, bài này mình làm tắt
Bài 2:
a) \(C=5x-3x^2+2=-\left(3x^2-5x-2\right)=-3\left(x^2-\frac{5}{3}x-\frac{2}{3}\right)\)
\(=-3\left(x^2-2.\frac{5}{6}.x+\frac{25}{35}-\frac{49}{36}\right)=-3\left[\left(x-\frac{5}{6}\right)^2-\frac{49}{36}\right]=\frac{49}{12}-3\left(x-\frac{5}{6}\right)^2\le\frac{49}{12}\)
Dấu "=" xảy ra khi x=5/6
b)\(D=-8x^2+4xy-y^2+3=3-\left(8x^2-4xy+y^2\right)=3-\left[\left(4x^2-4xy+y^2\right)+4x^2\right]\)
\(=3-\left[\left(2x-y\right)^2+4x^2\right]\le3\)
Dấu "=" xảy ra khi x=y=0
Ta có : A = x2 - x + 2
=> \(A=x^2-2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(\Rightarrow A=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Mà : \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)
Nên : \(A=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
Vậy Amin = \(\frac{3}{4}\) , dấu "=" xảy ra khi và chỉ khi x = \(\frac{1}{2}\)
A = x2 - x + 2 = x2 - 2.x.1 + 12 + 1 = ( x+1)2 + 1
Ta có: ( x+1)2 \(\ge\)0 ( với mọi x)
=> ( x+1)2 + 1 \(\ge\)1 khi với mọi x)
Dấu "=" xảy ra khi ( x+1)2 = 0
=> x + 1 = 0 -> x= -1
Vậy GTNN của biểu thức A = x2 - x + 2 là 1 khi x = -1