\(x^2\)- 2x)(\(y^2\)+ 6...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2018

Bài 1. Rút gọn:

\(a, x\left(1-x\right)+6\left(x+3\right)\left(x+3\right)\)

\(=x-x^2+6\left(x^2+6x+9\right)\)

\(=x-x^2+6x^2+36x+54\)

\(=5x^2+37x+54\)

\(b, \left(2-3x\right)\left(2+3x\right)-\left(x+5\right)\left(x-5\right)\)

\(=\left(4-9x^2\right)-\left(x^2-25\right)\)

\(=-10x^2+29\)

\(c, \left(3x+1\right)\left(x+5\right)-\left(x-1\right)\left(x+1\right)\)

\(=3x^2+15x+x+5-x^2+1\)

\(=2x^2+16x+6\)

\(d,\left(2-3x\right)\left(2x+3\right)+6\left(x-1\right)^2\)

\(=\left(4x+6-6x^2-9x\right)+6\left(x^2-2x+1\right)\)

\(=4x+6-6x^2-9x+6x^2-12x+6\)

\(=-17x+12\)

\(e, x\left(5-x\right)-\left(2x+2\right)\left(3x+2\right)-\left(x-2\right)\left(x+2\right)\)

\(=5x-x^2-\left(6x^2+4x+6x+4\right)-\left(x^2-4\right)\)

\(=5x-x^2-6x^2-4x-6x-4-x^2+4\)

\(=-8x^2-5x\)

25 tháng 10 2022

Bài 2: 

a: VT\(=x^3-xy+x^2y^2-y^3-x^3+y^3-x^2y^2\)

=-xy

b: \(VT=x^2+6xy+9y^2-x^2+9y^2-6xy=18y^2=VP\)

13 tháng 6 2019

\(xy\left(x-2\right)\left(y+6\right)+12x^2-24x+3y^2+18y+2045.\)

\(=\left(x^2-2x\right)\left(y^2+6y\right)+12\left(x^2-2x\right)+3\left(y^2+6y\right)+2045\)

\(=\left[\left(x^2-2x\right)\left(y^2+6y\right)+3\left(y^2+6y\right)\right]+12\left(x^2-2x+3\right)+2009.\)

\(=\left(x^2-2x+3\right)\left(y^2+6x\right)+12\left(x^2-2x+3\right)+2009\)

\(=\left(x^2-2x+3\right)\left(y^2+6x+12\right)+2009\)

\(=\left[\left(x-1\right)^2+2\right]\left[\left(y+3\right)^2+3\right]+2009\)

Ta có: \(\left(x-1\right)^2\ge0\forall x\Leftrightarrow\left(x-1\right)^2+2\ge2\)

\(\left(y+3\right)^2\ge0\forall y\Leftrightarrow\left(y+3\right)^2+3\ge3\)

Suy ra \(B=\left[\left(x-1\right)^2+2\right]\left[\left(y+3\right)^2+3\right]+2009\ge2.3+2009=2015\)

Vậy GTNN của B=2015 khi x=1, y=-3.

16 tháng 2 2024

sai từ dấu = thứ 3 rồi bạn

26 tháng 7 2016

a. \(P=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)

vì \(\left(x-1\right)^2\ge0\) với mọi x

=> (x-1)^2 +4 \(\ge\) vợi mọi x

Pmin=4 <=> x-1=0 <=>x=1

 

 

26 tháng 7 2016

1.

b)\(M=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu = xảy ra \(\Leftrightarrow x-\frac{1}{2}=0\) và \(y+3=0\)

\(\Leftrightarrow x=\frac{1}{2}\) và \(y=-3\)

Vậy GTNN của M là \(\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)và \(y=-3\)

15 tháng 6 2016

a) \(A=x^2+y^2-x+6y+10=x^2-x+\frac{1}{4}+y^2+6y+9+\frac{3}{4}\)

\(A=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x;y\)

Vậy GTNN của A = 3/4 khi x=1/2 và y=-3.

b) \(B=2x-2x^2-5=-2\left(x^2-x+\frac{1}{4}\right)-\frac{9}{2}=-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\forall x\)

Vậy GTLN của B = -9/2 khi x=1/2.

15 tháng 6 2016

x = 1/2

11 tháng 7 2020

Bài làm:

+ \(C=10\left(x^2-2\right)+5=10x^2-20+5=10x^2-15\ge-15\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(10x^2=0\Rightarrow x=0\)

Vậy \(Min\left(C\right)=-15\Leftrightarrow x=0\)

+ \(D=\left(7-x\right)\left(2x+1\right)=-2x^2+13x+7=-2\left(x^2-\frac{13}{2}x+\frac{169}{16}\right)-\frac{225}{8}\)

\(=-2\left(x-\frac{13}{4}\right)^2-\frac{225}{8}\le-\frac{225}{8}\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(-2\left(x-\frac{13}{4}\right)^2=0\Rightarrow x=\frac{13}{4}\)

Vậy \(Max\left(D\right)=-\frac{225}{8}\Leftrightarrow x=\frac{13}{4}\)

+ \(H=x^2+y^2+2x-4y+10=\left(x^2+2x+1\right)+\left(y^2-4y+4\right)+5\)

\(=\left(x+1\right)^2+\left(y-2\right)^2+5\ge5\left(\forall x,y\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-1\\y=2\end{cases}}\)

Vậy \(Min\left(H\right)=5\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}\)

+ \(E=-x^2-4x+6y-y^2-2021=-\left(x^2+4x+4\right)-\left(y^2-6y+9\right)-2008\)

\(=-\left(x+2\right)^2-\left(y-3\right)^2-2008\le-2008\left(\forall x,y\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}-\left(x+2\right)^2=0\\-\left(y-3\right)^2=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-2\\y=3\end{cases}}\)

Vậy \(Max\left(E\right)=-2008\Leftrightarrow\hept{\begin{cases}x=-2\\y=3\end{cases}}\)

Học tốt!!!!

15 tháng 6 2017

a, \(2x^2+3\left(x+1\right)\left(x-1\right)-5x\left(x+1\right)\)

\(=2x^2+3\left(x^2-1\right)-5x^2-5x\)

\(=2x^2+3x^2-3-5x^2-5x\)

\(=\left(2x^2+3x^2-5x^2\right)-3-5x\)

\(=-\left(5x+3\right)\)

b, \(\left(4x+3y\right)\left(2x-5y\right)-\left(2x+6y\right)\left(3x-5y\right)\)

\(=8x^2-20xy+6xy-\left(15y^2-6x^2-10xy-18xy-30y^2\right)\)

\(=8x^2-20xy+6xy-15y^2+6x^2+10xy+18xy+30y^2\)

\(=\left(8x^2+6x^2\right)+\left(-20xy+6xy+10xy+18xy\right)+\left(-15y^2+30y^2\right)\)

\(=14x^2+14xy+15y^2\)

\(=14x.\left(x+y\right)+15y^2\)

Chúc bạn học tốt!!!

15 tháng 6 2017

a) \(2x^2+3.\left(x+1\right).\left(x-1\right)-5x\left(x+1\right)\)

= \(2x^2+3.\left(x^2-1\right)-5x.\left(x+1\right)\)

= \(2x^2+3x^2-3-5x^2-5x\)

= \(-5x-3\)

24 tháng 7 2020

x2-2x+1=(x-1)2 >= 0 => x2-2x+3 >= 2 với mọi x thuộc R (1)

y2+6y+9=(y+3)2 >=0 => y2+6y+12 >=3 với mọi y thuộc R (2)

M=xy(x-2)(y+6)-12x2-24x+3y2+18y+2050

=(x2-2x)(y2+6y)+12(x2-2x)+3(y2+6y)+36+2014

=(x2-2x)(y2+6y+12)+3(y2+6y+12)+2014

=(x2-2x+3)(y2+6y+12)+2014 (3)

từ (1); (2) và (3) => B >= 2.3+2014 => B >= 2020

dấu "=" xảy ra <=> x=1 và y=-3

vậy minM=2020 khi x=1; y=-3