K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2018

\(\sqrt{x^2-8x+18-12}=\sqrt{x^2-8x+6}\)

                                            \(=\sqrt{x^2-2.4.x+16-10}\)

                                            \(=\sqrt{\left(x-4\right)^2-10}\)

Cái này hình như ko có min đâu 

15 tháng 11 2015

Ta có:

A=x2+8x+12=x2+2.x.4+16-4=(x+4)2-4 luon lon hon hoc bang(-4)

=>GTNN cua A=(-4)

tich cho minh nha

9 tháng 10 2019

a) \(A=5-8x-x^2=-\left(x^2+8x-5\right)\)

\(=-\left(x^2+8x+16-21\right)\)

\(=-\left[\left(x+4\right)^2-21\right]\)

\(=-\left(x+4\right)^2+21\le21\)

Vậy \(A_{max}=21\Leftrightarrow x+4=0\Leftrightarrow x=-4\)

\(B=5x-3x^2=-3\left(x^2-\frac{5}{3}x\right)\)

\(=-3\left(x^2-\frac{5}{3}x+\frac{35}{36}-\frac{25}{36}\right)\)

\(=-3\left[\left(x-\frac{5}{6}\right)^2-\frac{25}{36}\right]\)

\(=-3\left[\left(x-\frac{5}{6}\right)^2\right]+\frac{25}{12}\le\frac{25}{12}\)

Vậy \(B_{min}=\frac{25}{12}\Leftrightarrow x-\frac{5}{6}=0\Leftrightarrow x=\frac{5}{6}\)

27 tháng 8 2020

B = 4x2 + 8x 

= 4( x2 + 2x + 1 ) - 4

= 4( x + 1 )2 - 4

4( x + 1 )2 ≥ 0 ∀ x => 4( x + 1 )2 - 4 ≥ -4

Đẳng thức xảy ra <=> x + 1 = 0 => x = -1

=> MinB = -4 <=> x = -1

C = -2x2 + 8x - 15

= -2( x2 - 4x + 4 ) - 7

= -2( x - 2 )2 - 7

-2( x - 2 )2 ≤ 0 ∀ x => -2( x - 2 )2 - 7 ≤ -7

Đẳng thức xảy ra <=> x - 2 = 0 => x = 2

=> MaxC = -7 <=> x = 2

7 tháng 5 2018

Áp dụng Bunyakovsky, ta có :

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)

=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)

=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)

Mấy cái kia tương tự 

13 tháng 12 2021

\(\frac{3x^2-8x+6}{x^2-2x+1}\)

=\(\frac{2x^2-x^2-4x-4x+2+4}{x^2-2x+1}\)

=\(\frac{\left(2x^2-4x+2\right)+\left(x^2-4x+4\right)}{x^2-2x+1}\)

=\(\frac{2\left(x^2-2x+1\right)+\left(x^2-4x+4\right)}{x^2-2x+1}\)

=\(2+\frac{x^2-4x+4}{\left(x-1\right)^2}\)

=\(2+\frac{\left(x-2\right)^2}{\left(x-1\right)^2}\) 

Vì \(\frac{\left(x-2\right)^2}{\left(x-1\right)^2}\ge0\)  với mọi x

<=>\(2+\frac{\left(x-2\right)^2}{\left(x-1\right)^2}\) > 2 với mọi x

Dấu "=" xảy ra khi và chỉ khi x=-2 thì Min =2

Vậy Min=2

9 tháng 7 2018

\(B=\sqrt{x^2+8x+14}+\sqrt{9-x^2}\)

ĐKXĐ :

\(\hept{\begin{cases}x^2+8x+14\ge0\\9-x^2\ge0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\ge-4-\sqrt{2}\\x\le3\end{cases}}\)

\(\Leftrightarrow-4-\sqrt{2}\le x\le3\)

24 tháng 10 2015

bài 1:= \(2x\left(x-3\right)-6\left(x-3\right)+2y\left(x-3\right)\)

         =\(2\left(x-3\right)\left(x+y-3\right)\)

bài 2:P=\(x^2-2x+1+y^2+6y+9+2\)

         P=\(\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\)

vậy Pmin=2 khi x=1 và y=-3