Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhóm (x+1)(x+4)=t
(x+2)(x+3)=t+2
A=t(t+2)+5
A=t2+2t+5
A=(t+1)2+4
MinA=4 khi ............
1)\(2x^2+9y^2-6xy-6x-12y+2004\)
\(=x^2+x^2-6xy+9y^2-6x-12y+2004\)
\(=x^2+\left(x-3y\right)^2-10x+4x-12y+2004\)
\(=\left(x-3y\right)^2+4\left(x-3y\right)+x^2-10x+2004\)
\(=\left(x-3y\right)^2+4\left(x-3y\right)+x^2-10x+4+25+1975\)
\(=\left[\left(x-3y\right)^2+4\left(x-3y\right)+4\right]+\left(x^2-10x+25\right)+1975\)
\(=\left(x-3y+2\right)^2+\left(x-5\right)^2+1975\ge1975\)
Dấu "=" khi \(\begin{cases}\left(x-5\right)^2=0\\\left(x-3y+2\right)^2=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=5\\y=\frac{7}{3}\end{cases}\)
Vậy Min=1975 khi \(\begin{cases}x=5\\y=\frac{7}{3}\end{cases}\)
2)\(x\left(x+1\right)\left(x^2+x-4\right)=\left(x^2+x\right)\left(x^2+x-4\right)\)
Đặt \(t=x^2+x\) ta có:
\(t\left(t-4\right)=t^2-4t+4-4\)
\(=\left(t-2\right)^2-4\ge-4\)
Dấu "=" khi \(t-2=0\Leftrightarrow t=2\Leftrightarrow x^2+x=2\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-2\\x=1\end{array}\right.\)
Vậy Min=-4 khi \(\left[\begin{array}{nghiempt}x=-2\\x=1\end{array}\right.\)
3)\(\left(x^2+5x+5\right)\left[\left(x+2\right)\left(x+3\right)+1\right]\)
\(=\left(x^2+5x+5\right)\left[x^2+5x+6+1\right]\)
Đặt \(t=x^2+5x+5\) ta có:
\(t\left(t+1\right)=t^2+t+\frac{1}{4}-\frac{1}{4}=\left(t+\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)
Dấu "=" khi \(t+\frac{1}{2}=0\Leftrightarrow t=-\frac{1}{2}\Leftrightarrow x^2+5x+5=-\frac{1}{2}\)\(\Leftrightarrow x_{1,2}=\frac{-10\pm\sqrt{12}}{4}\)
Vậy Min=\(-\frac{1}{4}\) khi \(x_{1,2}=\frac{-10\pm\sqrt{12}}{4}\)
4)\(\left(x-1\right)\left(x-3\right)\left(x^2-4x+5\right)\)
\(=\left(x^2-4x+3\right)\left(x^2-4x+5\right)\)
Đặt \(t=x^2-4x+3\) ta có:
\(t\left(t+2\right)=t^2+2t+1-1=\left(t+1\right)^2-1\ge-1\)
Dấu "=" khi \(t+1=0\Leftrightarrow t=-1\Leftrightarrow x^2-4x+3=-1\Leftrightarrow x=2\)
Vậy Min=-1 khi x=2
Ta có : E = (x - 1) (x + 2)(x + 3)(x + 6)
=> E = [(x - 1)(x + 6)][(x + 2)(x + 3)]
=> E = (x2 + 5x - 6)(x2 + 5x + 6)
=> E = (x2 + 5x)2 - 62
=> E = (x2 + 5x)2 - 36
Mà : (x2 + 5x)2 \(\ge0\forall x\)
Nên : (x2 + 5x)2 - 36 \(\ge-36\forall x\)
Vậy GTNN của biểu thức là 36 tại x2 + 5x = 0 => x(x + 5) = 0 => x = 0 ; -5
a) \(A=\left|x+2\right|+\left|x-3\right|\)
\(A=\left|x+2\right|+\left|3-x\right|\ge\left|x+2+3-x\right|=5\)
\(\Rightarrow A\ge5\)
Dấu bằng xảy ra
\(\Leftrightarrow\left(x+2\right)\left(3-x\right)\ge0\)
\(\Leftrightarrow-2\le x\le3\)
Vậy .............................
a) Vì : \(\left(x+1\right)^2\ge0\forall x\)
\(\left(y-\frac{1}{3}\right)^2\ge0\forall x\)
Nên : \(\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2\ge0\forall x\)
Suy ra : C = \(\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2-10\ge-10\forall x\)
Vậy Cmin = -10 khi x = -1 và y = \(\frac{1}{3}\)
b) VÌ \(\left(2x-1\right)^2\ge0\forall x\)nên \(D\le\frac{5}{3}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)
Vậy....