\(\left|x+8\right|+\left|x+13\right|+\left|x+50\right|+20...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2018

Với mọi x ta có :

\(\left|x+50\right|=\left|-x-50\right|\)

\(\Leftrightarrow\left|x+8\right|+\left|x+50\right|=\left|x+8\right|+\left|-50-x\right|\)

\(\Leftrightarrow\left|x+8\right|+\left|-x-50\right|\ge\left|\left(x+8\right)+\left(-x-50\right)\right|\)

\(\Leftrightarrow\left|x+8\right|+\left|-x-50\right|\ge42\)

\(\left|x+13\right|\ge0\)

\(\Leftrightarrow\left|x+8\right|+\left|-x-50\right|+\left|x+13\right|+2018\ge2060\)

\(\Leftrightarrow A\ge2060\)

Dấu "=" xảy ra khi :

\(\left\{{}\begin{matrix}\left(x+8\right)\left(-x-50\right)\ge0\left(1\right)\\\left|x+13\right|=0\left(2\right)\end{matrix}\right.\)

Từ \(\left(1\right)\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+8\ge0\\-x-50\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x+8\le0\\-x-50\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge-8\\-50\ge x\end{matrix}\right.\\\left\{{}\begin{matrix}x\le-8\\-50\le x\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\in\varnothing\\-50\le x\le-8\end{matrix}\right.\)

\(\Leftrightarrow-50\le x\le-8\left(I\right)\)

Từ \(\left(2\right)\Leftrightarrow x+13=0\)

\(\Leftrightarrow x=-13\left(II\right)\)

Từ \(\left(I\right)+\left(II\right)\Leftrightarrow A_{Min}=2060\Leftrightarrow x=-13\)

21 tháng 6 2017

Tìm GTNN của biểu thức:

a) A = |x+5|+|x+17|

Giải

Ta có : A = |x+5|+|x+17| \(\ge\) |x+5+x+17|

A = |-x-5|+|x+17| \(\ge\) |-x-5+x+17| = | -12 | = 12

Dấu bằng xảy ra khi - 17 \(\le\) x \(\le\) -5

Vậy MinA=12 khi - 17 \(\le\) x \(\le\) -5

b) B = |x+8|+|x+13|+|x+50|

Giải

B = |x+8|+|x+13|+|x+50| \(\ge\) (| x+8|+|-50-x |)+|x+13|

= (| x+8-50-x |)+|x+13|

= |-42| + |x+13|

= 42 + |x+13| \(\ge\) 42

Vậy MinB = 42 khi và chỉ khi:

\(\left\{{}\begin{matrix}x+8\ge0\\x+13=0\\x+50\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge-8\\x=-13\\x\ge-50\end{matrix}\right.\) \(\Rightarrow x=-13\)

c) C = |x+5|+|x+2|+|x−7|+|x−8|

Giải

C = |x+5|+|x+2|+|x−7|+|x−8|

\(\ge\) |x+5| + |x+2| + |7-x| + |8-x|

\(\ge\) |x+5+7-x| + |x+2+8-x|

\(\ge\) |12| + |10|

\(\ge\) 12 + 10 \(\ge\) 22

Vậy MinC = 22 khi và chỉ khi :

-5 \(\le\) x \(\le\) 8 và -2 \(\le\) x \(\le\) 7 \(\Leftrightarrow\) -2 \(\le\) x \(\le\) 7

d) D = |x+3|+|x−2|+|x−5|

Giải

D = |x+3|+|x−2|+|x−5|

\(\ge\) ( |x+3|+|5-x| ) + |x-2| \(\ge\) | x+3+5-x | + | x-2 | \(\ge\) | 8 | + | x-2 | \(\ge\) 8 + | x-2 | \(\ge\) 8 Vậy MinD = 8 khi và chỉ khi: \(\left\{{}\begin{matrix}x+3\ge0\\x-2=0\\5-x\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge-3\\x=2\\x\le5\end{matrix}\right.\) \(\Rightarrow x=2\)

Tìm GTNN của biểu thức:

a) A = |x+5|+|x+17|

Giải

Ta có : A = |x+5|+|x+17| ≥≥|x+5+x+17|

A = |-x-5|+|x+17| |-x-5+x+17| = | -12 | = 12

Dấu bằng xảy ra khi - 17 x -5

Vậy MinA=12 khi - 17 x -5

b) B = |x+8|+|x+13|+|x+50|

Giải

B = |x+8|+|x+13|+|x+50| (| x+8|+|-50-x |)+|x+13|

= (| x+8-50-x |)+|x+13|

= |-42| + |x+13|

= 42 + |x+13| ≥≥42

Vậy MinB = 42 khi và chỉ khi:

x+8 ≥ 0 ⇒x ≥ −8

x+13 = 0 => x = −13 .Vậy x=-13

x+50 ≥ 0 => x ≥ −50

c) C = |x+5|+|x+2|+|x−7|+|x−8|

Giải

C = |x+5|+|x+2|+|x−7|+|x−8|

=> |x+5| + |x+2| + |7-x| + |8-x|

|x+5+7-x| + |x+2+8-x| = |12| + |10| =12 + 10 = 22

Vậy MinC = 22 khi và chỉ khi :

-5 x 8 và -2 x 7 -2 x 7

30 tháng 9 2017

\(A=\left|x-1004\right|-\left|x+1003\right|\)

Áp dụng BĐT \(\left|a\right|-\left|b\right|\le\left|a-b\right|\)

\(\Leftrightarrow\left|x-1004\right|-\left|x+1003\right|\le\left|x-1004-x-1003\right|\)

\(\Leftrightarrow\left|x-1004\right|-\left|x+1003\right|\le2007\)

Vậy GTLN của A là 2007. Dấu "=" xảy ra khi \(x\ge1004\) hoặc \(x\le1003\).

30 tháng 9 2017

- Câu B dùng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) làm tương tự nhé bạn!

13 tháng 3 2018

Đặt: \(\left|x-2017\right|=t\ge0\) ta có: \(l=\frac{t+2017}{t+2018}=\frac{t+2018-1}{t+2018}=1-\frac{1}{t+2018}\ge1-\frac{1}{2018}=\frac{2017}{2018}\)

Dấu "=" xảy ra khi: \(t=0\Leftrightarrow x=2017\)

14 tháng 3 2018

Đặt: |x−2017|=t≥0 ta có: l=t+2017t+2018 =t+2018−1t+2018 =1−1t+2018 ≥1−12018 =20172018 

Dấu "=" xảy ra khi: t=0⇔x=2017

 ...

..

6 tháng 3 2020

\(A=\frac{\left|x-2017\right|+2018}{\left|x-2017\right|+2019}\)

\(A=\frac{\left|x-2017\right|+2019-1}{\left|x-2017\right|+2019}\)

\(A=1-\frac{1}{\left|x-2017\right|+2019}\)

A nhỏ nhất khi \(1-\frac{1}{\left|x-2017\right|+2019}\)nhỏ nhất

khi \(\frac{1}{\left|x-2017\right|+2019}\)lớn nhất

khi \(\left|x-2017\right|+2019\)nhỏ nhất

mà |x - 2017| \(\ge0\)

=> |x - 2017| + 2019 \(\ge2019\)

Vậy A nhỏ nhất khi A = 2019 khi x - 2017 = 0 => x = 2017

6 tháng 3 2020

\(A=\frac{\backslash x-2017\backslash+2018}{\backslash x-2017\backslash+2019}\) 

\(A=\frac{2018}{2019}\)

7 tháng 11 2019

Ta có:

|x−2015|+|x−2016|+|x−2017||x−2015|+|x−2016|+|x−2017|

=|x−2016|+|x−2015|+|x−2017|=|x−2016|+|x−2015|+|x−2017|

=|x−2016|+(|x−2015|+|x−2017|)=|x−2016|+(|x−2015|+|x−2017|)

∗)∗) Áp dụng BĐT |a|+|b|≥|a+b||a|+|b|≥|a+b| ta có:

|x−2015|+|x−2017|=|x−2015|+|x−2017|= |x−2015|+|2017−x||x−2015|+|2017−x|

≥|x−2015+2017−x|=|2|=2≥|x−2015+2017−x|=|2|=2

∗)∗) Dễ thấy: |x−2016|≥0∀x|x−2016|≥0∀x

⇔|x−2015|+|x−2016|+|x−2017|⇔|x−2015|+|x−2016|+|x−2017| ≥2≥2

Đẳng thức xảy ra ⇔⎧⎩⎨⎪⎪x−2015≥0x−2016=0x−2017≤0⇔⎧⎩⎨⎪⎪x≥2015x=2016x≤2017⇔{x−2015≥0x−2016=0x−2017≤0⇔{x≥2015x=2016x≤2017 ⇔x=2016⇔x=2016

Vậy GTNNGTNN của biểu thức là 2⇔x=2016

7 tháng 11 2019

Ta có:

|x − 2015| + |x − 2016| + |x − 2017|

= |x − 2016| + |x − 2015| + |x - 2017|

= |x − 2016|+(| x− 2015| + |x − 2017|)

∗)∗) Áp dụng BĐT |a| + |b| ≥ |a + b|, ta có:

|x − 2015|+|x − 2017| = |x − 2015|+|2017 − x|

≥ |x − 2015 + 2017 − x| = |2| = 2

∗) Dễ thấy: |x − 2016| ≥ 0 ∀ x

⇔|x − 2015| + |x − 2016| + |x − 2017|

Đẳng thức xảy ra ⇔x−2015≥0

x−2016=0

x−2017≤0 ⇔x≥2015 (Loại)

x=2016 (TM)

x≤2017 (Loại)

Vậy x=2016

25 tháng 8 2020

F = | 2x - 2 | + | 2x - 2003 |

F = | 2x - 2 | + | -( 2x - 2003 ) |

F = | 2x - 2 | + | 2003 - 2x |

Áp dụng bất đẳng thức | a | + | b | ≥ | a + b | ta có :

F = | 2x - 2 | + | 2003 - 2x | ≥ | 2x - 2 + 2003 - 2x | = | 2001 | = 2001

Đẳng thức xảy ra khi ab ≥ 0

=> ( 2x - 2 )( 2003 - 2x ) ≥ 0

Xét hai trường hợp :

1/ \(\hept{\begin{cases}2x-2\ge0\\2003-2x\ge0\end{cases}}\Rightarrow\hept{\begin{cases}2x\ge2\\-2x\ge-2003\end{cases}}\Rightarrow\hept{\begin{cases}x\ge1\\x\le\frac{2003}{2}\end{cases}\Rightarrow}1\le x\le\frac{2003}{2}\)

2/ \(\hept{\begin{cases}2x-2\le0\\2003-2x\le0\end{cases}}\Rightarrow\hept{\begin{cases}2x\le2\\-2x\le-2003\end{cases}}\Rightarrow\hept{\begin{cases}x\le1\\x\ge\frac{2003}{2}\end{cases}}\)( loại )

Vậy MinF = 2001 <=> \(1\le x\le\frac{2003}{2}\)

G = | 2x - 3 | + 1/2| 4x - 1 |

G = | 2x - 3 | + | 2x - 1/2 |

G = | -( 2x - 3 ) | + | 2x - 1/2 |

G = | 3 - 2x | + | 2x - 1/2 |

Áp dụng bất đẳng thức | a | + | b | ≥ | a + b | ta có :

G = | 3 - 2x | + | 2x - 1/2 | ≥ | 3 - 2x + 2x - 1/2 | = | 5/2 | = 5/2

Đẳng thức xảy ra khi ab ≥ 0 

=> ( 3 - 2x )( 2x - 1/2 ) ≥ 0

Xét 2 trường hợp :

1/ \(\hept{\begin{cases}3-2x\ge0\\2x-\frac{1}{2}\ge0\end{cases}}\Rightarrow\hept{\begin{cases}-2x\ge-3\\2x\ge\frac{1}{2}\end{cases}\Rightarrow}\hept{\begin{cases}x\le\frac{3}{2}\\x\ge\frac{1}{4}\end{cases}}\Rightarrow\frac{1}{4}\le x\le\frac{3}{2}\)

2/ \(\hept{\begin{cases}3-2x\le0\\2x-\frac{1}{2}\le0\end{cases}}\Rightarrow\hept{\begin{cases}-2x\le-3\\2x\le\frac{1}{2}\end{cases}\Rightarrow}\hept{\begin{cases}x\ge\frac{3}{2}\\x\le\frac{1}{4}\end{cases}}\)( loại )

=> MinG = 5/2 <=> \(\frac{1}{4}\le x\le\frac{3}{2}\)

H = | x - 2018 | + | x - 2019 | + | x - 2020 | 

H = | x - 2019 | + [ | x - 2018 | + | x - 2020 | ]

H = | x - 2019 | + [ x - 2018 | + | -( x - 2020 ) | ]

H = | x - 2019 | + [ | x - 2018 | + | 2020 - x | ]

Ta có : | x - 2019 | ≥ 0 ∀ x

| x - 2018 | + | 2020 - x | ≥ | x - 2018 + 2020 - x | = | 2 | = 2 ( BĐT | a | + | b | ≥ | a + b | )

=> | x - 2019 | + [ | x - 2018 | + | 2020 - x | ] ≥ 2

Đẳng thức xảy ra <=> \(\hept{\begin{cases}\left|x-2019\right|=0\\\left(x-2018\right)\left(2020-x\right)\ge0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=2019\\2018\le x\le2020\end{cases}}\)

=> x = 2019

=> MinH = 2 <=> x = 2019

7 tháng 2 2017

\(\left|x+8\right|+\left|x+13\right|=\left|x+8\right|+\left|-x-13\right|\)

Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có :

\(\left|x+8\right|+\left|-x-13\right|\ge\left|x+8-x-13\right|=\left|-5\right|=5\)

\(\Rightarrow A\ge\left|x+50\right|+5\ge5\)

Dấu "=" xảy ra <=> |x + 50| = 0 => x = - 50

Vậy gtnn của A là 5 tại x = - 50

27 tháng 2 2020

Sao chép