Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=2\left|4,5x-9\right|-18\)
Vì \(\left|4,5x-9\right|\ge0\forall x\)
=> \(2\left|4,5x-9\right|-18\ge-18\)
Dấu " = " xảy ra khi và chỉ khi |4,5x - 9| = 0 => 4,5x - 9 = 0 => 4,5x = 9 => x = 2
Vậy \(B_{min}=-18\)khi x = 2
\(C=\left(2x+1\right)^2-1990\)
Vì \(\left(2x+1\right)^2\ge0\forall x\)
=> \(\left(2x+1\right)^2-1990\ge-1990\forall x\)
Dấu " = " xảy ra khi và chỉ khi (2x + 1)2 = 0 => 2x + 1 = 0 => x = -1/2
Vậy \(C_{min}=-1990\)khi x = -1/2
\(D=\left(x+1\right)^2+\left|y+5\right|-\frac{3}{2}\)
Vì \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\\\left|y-5\right|\ge0\forall y\end{cases}}\)
=> \(\left(x+1\right)^2+\left|y+5\right|\ge0\forall x\)
=> \(\left(x+1\right)^2+\left|y+5\right|-\frac{3}{2}\ge-\frac{3}{2}\forall x\)
Dấu " = " xảy ra khi và chỉ khi \(\hept{\begin{cases}\left(x+1\right)^2=0\\\left|y+5\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=-5\end{cases}}\)
Vậy \(D_{min}=-\frac{3}{2}\)khi \(\hept{\begin{cases}x=-1\\y=-5\end{cases}}\)
1a, 15-/2x-1/=8
=>/2x-1/=15-8 =7
=> 2x-1 =8 hoặc 2x-1=-8
=>2x =8+1=9 hoặc 2x=-8+1 =-7
=> x = 9:2 =4,5 hoặc 2x = (-7):2 = -3,5
vậy..........
1b, /x+2/ +/5-2y/ =0
=> /x+2/=0và /5-2y/ =0
=> x=2 và 2y =5
=>x=2 và y=2,5
vậy....................
bài 1:
|x| = \(\dfrac{1}{3}\) => x = \(\pm\)\(\dfrac{1}{3}\) |y| = 1 => y = \(\pm\)1
a
+) A = 2x\(^2\) - 3x + 5
= 2\(\left(\dfrac{1}{3}\right)^2\) - 3.\(\dfrac{1}{3}\) +5 = 2.\(\dfrac{1}{9}\) - 1 + 5
= \(\dfrac{2}{9}\) - 1 + 5 = \(\dfrac{2-9+45}{9}\) = \(\dfrac{38}{9}\)
+) A = 2x\(^2\) - 3x + 5
= 2\(\left(\dfrac{-1}{3}\right)^2\) - 3\(\left(\dfrac{-1}{3}\right)\) + 5
= 2.\(\dfrac{1}{9}\) - (-1) + 5 = \(\dfrac{2}{9}\) + 1 +5
= \(\dfrac{2+9+45}{9}\) = \(\dfrac{56}{9}\)
b) +) B = 2x\(^2\) - 3xy + y\(^2\)
= 2\(\left(\dfrac{1}{3}\right)^2\) - 3.\(\dfrac{1}{3}\).1 + 1\(^2\)
= 2.\(\dfrac{1}{9}\) - 1 + 1 = \(\dfrac{2}{9}\) - 1 + 1
= \(\dfrac{2-9+9}{9}\) = \(\dfrac{2}{9}\)
+) B = 2x\(^2\) - 3xy + y\(^2\)
= 2\(\left(\dfrac{-1}{3}\right)\)\(^2\) - 3\(\left(\dfrac{-1}{3}\right)\). 1 + 1\(^2\)
= 2.\(\dfrac{1}{9}\) - (-1) + 1 = \(\dfrac{2}{9}\) + 1 + 1
= \(\dfrac{2+9+9}{9}\) = \(\dfrac{20}{9}\)
bài 3
x.y.z = 2 và x + y + z = 0
A = ( x + y )( y +z )( z + x )
= x + y . y + z . z + x = ( x + y + z ) + ( x . y . z )
= 0 + 2 = 2
bài 4
a) | 2x - \(\dfrac{1}{3}\) | - \(\dfrac{1}{3}\) = 0 => | 2x - \(\dfrac{1}{3}\) | = \(\dfrac{1}{3}\)
=> 2x - \(\dfrac{1}{3}\) = \(\pm\) \(\dfrac{1}{3}\)
+) 2x - \(\dfrac{1}{3}\)= \(\dfrac{1}{3}\)
=> 2x = \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) = \(\dfrac{2}{3}\)
x = \(\dfrac{2}{3}\) : 2 = \(\dfrac{2}{3}\) . \(\dfrac{1}{2}\) = \(\dfrac{1}{3}\)
+) 2x - \(\dfrac{1}{3}\) = \(\dfrac{-1}{3}\)
2x = \(\dfrac{-1}{3}\) + \(\dfrac{1}{3}\) = 0
x = 0 : 2 = 2
1/ Gọi Bmin là GTNN của B
Ta có \(\left|3x-6\right|\ge0\)=> \(2\left|3x-6\right|\ge0\)với mọi \(x\in R\)
=> \(2\left|3x-6\right|-4\ge0\)với mọi \(x\in R\).
=> Bmin = 0.
Vậy GTNN của B = 0.
2/ Gọi Dmin là GTNN của D.
Ta có \(\left|x-2\right|\ge0\)với mọi \(x\in R\)
và \(\left|x-8\right|\ge0\)với mọi \(x\in R\)
=> \(\left|x-2\right|+\left|x-8\right|\ge0\)với mọi \(x\in R\)
=> Dmin = 0.
=> \(\left|x-2\right|+\left|x-8\right|=0\)
=> \(\hept{\begin{cases}\left|x-2\right|=0\\\left|x-8\right|=0\end{cases}}\)=> \(\hept{\begin{cases}x-2=0\\x-8=0\end{cases}}\)=> \(\hept{\begin{cases}x=2\\x=8\end{cases}}\)(Vô lý! Không thể cùng lúc có 2 giá trị x xảy ra)
Vậy không có x thoả mãn đk khi GTNN của D = 3.
a) \(A=\left(6x-1\right)^2+2017\)
Vì \(\left(6x-1\right)^2\ge0\)
Nên \(\left(6x-1\right)^2+2017\ge2017\)
Vậy GTNN của A=2017 khi \(6x-1=0\Leftrightarrow x=\dfrac{1}{6}\)
c) \(C=15+\left|2x-1\right|\)
Vì \(\left|2x-1\right|\ge0\)
Nên \(\left|2x-1\right|+15\ge15\)
Vậy GTNN của C=15 khi \(2x-1=0\Leftrightarrow x=\dfrac{1}{2}\)
d) \(D=\left(x-1\right)^2+\left(2x-y\right)^2+3\)
Vì \(\left(x-1\right)^2+\left(2x-y\right)^2\ge0\)
Nên \(\left(x-1\right)^2+\left(2x-y\right)^2+3\ge3\)
Vậy GTNN của D=3 khi \(\left\{{}\begin{matrix}x-1=0\\2x-y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\2.1-y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)
Câu d :
\(x=1\) mới đúng nha!
Dù sao mik cx cảm ơn bạn nhìu!