\(\sqrt{x-1}-12\)

GIÚP EM VỚI Ạ EM ĐANG CẦN GẤP  Ạ

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2022

đk : x>= 1 

Q = \(\sqrt{x-1}-12\)

với \(x\ge1\Leftrightarrow x-1\ge0\Leftrightarrow\sqrt{x-1}\ge0\Leftrightarrow\sqrt{x-1}-12\ge12\)

Dấu ''='' xảy ra khi x = 1 

23 tháng 1 2022

\(\sqrt{x-1}-12\ge-12\)nhé 

8 tháng 8 2019

(x+1)^2>=0 và (y-1)^2>=0

=>C>=-10

Dấu = xảy ra khi x+1=0,y-1=0

=>x=-1,y=1

Vậy C=-10 khi x=-1,y=1

k cho mk nha

8 tháng 8 2019

\(\hept{\begin{cases}\left(x+1\right)^2\ge0\\\left(y-1\right)^2\ge0\end{cases}\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2-10\ge-10}\)

Dấu ''='' xảy ra <=> x = -1 ; y = 1

19 tháng 2 2019

Bài 2

Ta có :

\(3y^2-12=0\)

\(3y^2=0+12\)

\(3y^2=12\)

\(y^2=12:3\)

\(y^2=4\)

\(\Rightarrow y=\pm2\)

b) \(\left|x+1\right|+2=0\)

\(\left|x+1\right|=0+2\)

\(\Rightarrow\orbr{\begin{cases}x+1=2\\x+1=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=-3\end{cases}}}\)

19 tháng 2 2019

\(N=\frac{3}{2x^2+6}\)

Ta có: \(x^2\ge0\Rightarrow2x^2+6\ge6\)

\(\Rightarrow N_{Max}=\frac{3}{2x^2+6}=\frac{3}{6}=1,5\)

\(\Leftrightarrow2x^2+6=6\Leftrightarrow x=0\)

2 tháng 1 2022

Các n thỏa mãn\(\hept{\begin{cases}n\inℤ\\n>1\end{cases}}\)

bởi \(A=\frac{2\sqrt{n-1}}{\sqrt{n-1}}=2\)không phụ thuộc vào giá trị của biến nên chỉ cần điều kiện xác định của phân thức và căn bậc hai thôi.

28 tháng 12 2019

ta có: x = 2018 => 2019 = x + 1. Do đó:

\(C=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...+\left(x+1\right)x-1.\)

\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+...+x^2+x-1.\)

\(=x-1=2019-1=2018\)

Vậy C = 2018 với x = 2018.

Học tốt nhé ^3^

28 tháng 12 2019

\(Ta \)  \(có :\)

\(x = 2018\)\(\Leftrightarrow\)\(x + 1 = 2019\)

\(Thay \)  \(x + 1 = 2019\)\(vào \)  \(C , ta \)  \(được :\)

\(C = x\)\(15\)\(- ( x + 1 ).x\)\(14\)\(+ ( x + 1 ).x\)\(13\) \(- ( x + 1 ).x\)\(12\) \(+ ...+ ( x + 1 ).x - 1\)

\(C = x\)\(15\)\(- x\)\(15\)\(- x\)\(14\) \(+ x\)\(14\) \(+ x\)\(13\)\(- x\)\(13\)\(- x\)\(12\)\(+ ... + x^2 + x - 1\)

\(C = x - 1\)

\(Thay \)  \(x = 2018\)  \(vào \)  \(C\) \(, ta \)  \(được :\)

\(C = 2018 - 1 = 2017\)

26 tháng 3 2020

Ta có : C = y . \(\frac{8}{5}.x.ab^5.2.x^3.y\)

                = \(\frac{16}{5}.a.b^5.x^4.y^2\)

Trong đó : hệ số : \(\frac{16}{5}.a.b^5\)

                : biến : x ; y

                : bậc : 4,2

5 tháng 8 2019

Làm mẫu câu a nhé:

Ta có: \(2x=3y\)

   \(\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x^2}{9}=\frac{y^2}{4}\)

Áp dụng t/c dãy tỉ số = nhau ta có:

\(\frac{x}{3}=\frac{y}{2}=\frac{x^2}{9}=\frac{y^2}{4}=\frac{x^2-y^2}{9-4}=5\)

\(\Rightarrow x=3.5=15\)

\(y=5.2=10\)

5 tháng 8 2019

Ý 1:

\(2x=3y\Leftrightarrow\frac{x}{3}=\frac{y}{2}\)

Áp dụng t/c DTSBN ta có : \(\frac{x}{3}=\frac{y}{2}=\frac{x^2-y^2}{3^2-2^2}=\frac{25}{5}=5\)

=> x,y=...

\(\frac{x}{3}=\frac{y}{4}\)

Áp dụng t/c DTSBN ta có : \(\frac{x}{3}=\frac{y}{4}=\frac{3x-2y}{3.3-2.4}=\frac{5}{1}=5\)

=>x,y=...

\(3x=2y=5z\Leftrightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{3}\)

Áp dụng t/c DTSBN ta có : \(\frac{x}{2}=\frac{y}{5}=\frac{z}{3}=\frac{y-2x}{5-2.2}=\frac{5}{1}=5\)

=>x,y,z=....

2 tháng 5 2020

\(\left(7x-3x^2y+\frac{1}{2}\right)-N=2xy-3x^2y+\frac{1}{3}x-2\)

\(N=\left(7x-3x^2y+\frac{1}{2}\right)-\left(2xy-3x^2y+\frac{1}{3}x-2\right)\)

\(N=7x-3x^2y+\frac{1}{2}-2xy+3x^2y-\frac{1}{3}x+2\)

\(N=\left(7-\frac{1}{3}\right)x+\left(3x^2y-3x^2y\right)-2xy+\left(\frac{1}{2}+2\right)\)

\(N=\frac{20}{3}x+0-2xy+\frac{5}{2}\)

\(N=\frac{20}{3}x-2xy+\frac{5}{2}\)

Thay x = -1 ; y = 1/2 vào N ta được :

\(N=\frac{20}{3}\left(-1\right)-2\left(-1\right)\cdot\frac{1}{2}+\frac{5}{2}\)

\(N=\frac{-20}{3}-\left(-1\right)+\frac{5}{2}\)

\(N=\frac{-20}{3}+1+\frac{5}{2}\)

\(N=\frac{-19}{6}\)

Vậy giá trị của N = -19/6 khi x = -1 ; y = 1/2