K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2018

\(x^2+x+\frac{1}{x^2}+2x+2=\left(x^2+2+\frac{1}{x^2}\right)+\left(x+1\right)^2-1=\left(x+\frac{1}{x}\right)^2+\left(x+1\right)^2-1\ge-1\)

Vậy giá trị nhỏ nhất của biểu thức trên là -1 khi x=-1.

22 tháng 11 2020

MK KO BT MK MỚI HO C LỚP 6

AI HỌC LỚP 6 CHO MK XIN

11 tháng 7 2020

Trả lời: 

Phương trình hoành độ giao điểm (P) và (d) ta có:

\(-x^2=2x+m-1\)

\(\Leftrightarrow x^2+2x+m-1=0\)(1)

Ta có: \(\Delta=2^2-4.1.\left(m-1\right)\)

              \(=4-4m+4\)

               \(=8-4m\)

Để phương trình (1) có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\)

                                                                \(\Leftrightarrow8-4m>0\)

                                                                \(\Leftrightarrow4m< 8\)

                                                                 \(\Leftrightarrow m< 2\)

\(\Rightarrow\)Phương trình (1) có 2 nghiệm phân biệt 

\(\Rightarrow\)(d) cắt (P) tại 2 diểm phân biệt \(A\left(x_1,y_1\right);B\left(x_2,y_2\right)\)

Áp dụng Vi-ét \(\hept{\begin{cases}x_1+x_2=-2\left(1\right)\\x_1.x_2=m-1\left(2\right)\end{cases}}\)

Ta có \(y_1=-x_1^2\)\(y_2=-x_2^2\)

Theo đề bài:

\(x_1.y_1-x_2.y_2-x_1.x_2=4\)

\(\Leftrightarrow x_1.\left(-x_1^2\right)-x_2.\left(-x_2^2\right)-x_1.x_2=4\)

\(\Leftrightarrow-x_1^3+x_2^3-x_1.x_2=4\)

\(\Leftrightarrow-\left(x_1^3-x_2^3\right)-\left(m-1\right)=4\)

\(\Leftrightarrow-\left(x_1-x_2\right).\left(x_1^2+x_1.x_2+x_2^2\right)-\left(m-1\right)=4\)

\(\Leftrightarrow-\left(x_1-x_2\right)\left[\left(x_1+x_2\right)^2-2x_1.x_2+x_1.x_2\right]-\left(m-1\right)=4\)

\(\Leftrightarrow-\left(x_1-x_2\right).\left[\left(x_1+x_2\right)^2-x_1.x_2\right]-\left(m-1\right)=4\)

\(\Leftrightarrow-\left(x_1-x_2\right).\left[\left(-2\right)^2-m+1\right]-\left(m-1\right)=4\)

\(\Leftrightarrow-\left(x_1-x_2\right).\left(4-m+1\right)=4+m-1\)

\(\Leftrightarrow-\left(x_1-x_2\right).\left(3-m\right)=m+3\)

\(\Leftrightarrow-\left(x_1-x_2\right)=\frac{m+3}{3-m}\)

\(\Leftrightarrow x_1-x_2=\frac{m+3}{m-3}\)(3)

Từ (1) (3) ta có: \(\hept{\begin{cases}x_1+x_2=-2\\x_1-x_2=\frac{m+3}{m-3}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x_1=-2+\frac{m+3}{m-3}=\frac{9-m}{m-3}=-\left(m+3\right)\\x_1+x_2=-2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x_1=\frac{-\left(m+3\right)}{2}\\x_2=\frac{m-1}{2}\end{cases}}\)

Thay x1, x2 vào (2) ta có

\(x_1.x_2=m-1\)

\(\Leftrightarrow\frac{-\left(m+3\right)}{2}.\frac{m-1}{2}=m-1\)

\(\Leftrightarrow\frac{-\left(m+3\right)}{2}=2\)

\(\Leftrightarrow-\left(m+3\right)=4\)

\(\Leftrightarrow m+3=-4\)

\(\Leftrightarrow m=-7\)(TM)

Vậy \(m=-7\) thì thỏa mãn bài toán 

27 tháng 3 2023

tại sao y1=-x1^2 vậy ạ ?

2 tháng 6 2020

Một người đều chơi 9 trận với 9 người người khác không có trận hòa. 

Do đó: \(x_1+y_1=x_2+y_2=....=x_{10}+y_{10}=9\)

Mà tổng số trận thắng bằng tổng số trận thua do đó:

\(x_1+x_2+...+x_{10}=y_1+y_2+y_3+...+y_{10}\)

Ta có: \(\left(x_1^2+x_2^2+...+x_{10}^2\right)-\left(y_1^2+y_2^2+...+y_{10}^2\right)\)

\(=\left(x_1^2-y_1^2\right)+\left(x_2^2-y_2^2\right)+.....+\left(x_{10}^2-y_{10}^2\right)\)

\(=9\left(x_1-y_1\right)+9\left(x_2-y_2\right)+....+9\left(x_{10}-y_{10}\right)\)

\(=9\left(x_1-y_1+x_2-y_2+....+x_{10}-y_{10}\right)\)

\(=9\left[\left(x_1+x_2+...+x_{10}\right)-\left(y_1+y_2+y_3+....+y_{10}\right)\right]=0\)

Vậy \(x_1^2+x_2^2+...+x_{10}^2=y_1^2+y_2^2+....+y_{10}^2\)

19 tháng 9 2020

\(A=\sqrt{x^2-2x+1}+\sqrt{\left(x-4\right)^2}+\sqrt{\left(x-6\right)^2}\)

\(=\sqrt{\left(x-1\right)^2}+\left|x-4\right|+\left|x-6\right|\)

\(=\left|x-1\right|+\left|x-4\right|+\left|x-6\right|\)

\(=\left|x-4\right|+\left(\left|x-1\right|+\left|x-6\right|\right)\)

\(=\left|x-4\right|+\left(\left|x-1\right|+\left|6-x\right|\right)\)

Ta có \(\hept{\begin{cases}\left|x-4\right|\ge0\forall x\\\left|x-1\right|+\left|6-x\right|\ge\left|x-1+6-x\right|=\left|5\right|=5\end{cases}}\)

=> \(\left|x-4\right|+\left(\left|x-1\right|+\left|6-x\right|\right)\ge5\forall x\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-4=0\\\left(x-1\right)\left(6-x\right)\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\1\le x\le6\end{cases}}\Leftrightarrow x=4\)

=> MinA = 5 <=> x = 4

19 tháng 9 2020

Ta có: \(A=\sqrt{x^2-2x+1}+\sqrt{\left(x-4\right)^2}+\sqrt{\left(x-6\right)^2}\)

\(\Rightarrow A=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-4\right)^2}+\sqrt{\left(x-6\right)^2}\)

\(=\left|x-1\right|+\left|x-4\right|+\left|x-6\right|\)

\(=\left|x-4\right|+\left|x-1\right|+\left|x-6\right|\)

Xét \(\left|x-1\right|+\left|x-6\right|\)ta có: 

\(\left|x-1\right|+\left|x-6\right|=\left|x-1\right|+\left|6-x\right|\ge\left|x-1+6-x\right|=\left|5\right|=5\)(1)

Dấu " = " xảy ra \(\Leftrightarrow\left(x-1\right)\left(6-x\right)\ge0\)

TH1: Nếu \(\hept{\begin{cases}x-1< 0\\6-x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 1\\6< x\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 1\\x>6\end{cases}}\)( vô lý )

TH2: Nếu \(\hept{\begin{cases}x-1\ge0\\6-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\6\ge x\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\le6\end{cases}}\Leftrightarrow1\le x\le6\)

mà \(\left|x-4\right|\ge0\)(2)

Từ (1) và (2) \(\Rightarrow A\ge5\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x-4=0\\1\le x\le6\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\1\le x\le6\end{cases}}\Leftrightarrow x=4\)

Vậy \(minA=5\)\(\Leftrightarrow x=4\)

26 tháng 10 2020

tìm gtnn của biểu thức q=1/2(x^10/y^2 + y^10/x^2)+1/4(x^16 + y^16) - (1+ x^2y^2 )^2 

ai giúp mk vs