\(\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+1-\frac{2x+\sqrt{x}}{\sqrt{x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2016

\(P=\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+1-\frac{2x+\sqrt{x}}{\sqrt{x}}\)

\(=\frac{x^2-\sqrt{x}-2x\sqrt{x}+2x}{x-\sqrt{x}+1}=\frac{\left(x-\sqrt{x}\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}=x-\sqrt{x}\)

\(=\left(x-\frac{2\sqrt{x}}{2}+\frac{1}{4}\right)-\frac{1}{4}=\left(\sqrt{x}-\frac{1}{4}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)

Vậy GTNN là \(\frac{-1}{4}\)đạt được khi x = \(\frac{1}{4}\)

7 tháng 7 2020

các pro giúp em TvT

8 tháng 7 2020

\(A=\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}:\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\left(ĐKXĐ:x\ge0;x\ne1\right)\)

\(< =>A=\frac{1}{x-\sqrt{x}}+\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=\frac{1}{x-\sqrt{x}}+\sqrt{x}\)

\(< =>A=\frac{1+\sqrt{x}\left(x-\sqrt{x}\right)}{x-\sqrt{x}}=\frac{1+x\sqrt{x}-x}{x-\sqrt{x}}\)

Với \(x=\frac{18}{4+\sqrt{7}}\)thì \(A=\frac{1+\frac{18}{4+\sqrt{7}}.\sqrt{\frac{18}{4+\sqrt{7}}}-\frac{18}{4+\sqrt{7}}}{\frac{18}{4+\sqrt{7}}-\sqrt{\frac{18}{4+\sqrt{7}}}}\)

\(=\frac{1}{18+\frac{4}{7}-\sqrt{18+\frac{4}{7}}}+\sqrt{18+4\sqrt{7}}\)

Em mới lớp 7 nên chỉ làm được thế thôi ạ :3

17 tháng 6 2021

\(a,\hept{\begin{cases}x\ge1\\x\le3\end{cases}}\)

\(1\le x\le3\)thì biểu thức được xác định

\(b,\frac{\sqrt{x-2}}{\sqrt{2x-1}}\)

để biểu thức đc xác định thì

\(\sqrt{x-2}\ge0\)

\(x\ge2\)

\(\sqrt{2x-1}\ne0< =>\sqrt{2x-1}>0\)

\(x>\frac{1}{2}\)

kết hợp điều kiện thì \(x\ge2\)

\(C=\frac{\sqrt{x}-1+\sqrt{x}+1}{x-1}.\frac{2}{\sqrt{x}}\)

\(C=\frac{2\sqrt{x}}{x-1}.\frac{2}{\sqrt{x}}\)

\(C=\frac{4}{x-1}\)

\(< =>x\ne0\)để biểu thức đc xđ

7 tháng 6 2019

1) \(\frac{1}{\sqrt{2x-1}}\)có nghĩa khi \(\hept{\begin{cases}2x-1\ge0\\\sqrt{2x-1}\ne0\end{cases}}\)

\(\Leftrightarrow2x-1>0\)

\(\Leftrightarrow x>\frac{1}{2}\)

\(\sqrt{5-x}\)có nghĩa khi \(5-x\ge0\Leftrightarrow x\ge5\)

Vậy \(ĐKXĐ:\frac{1}{2}>x\ge5\)

2) \(\sqrt{x-\frac{1}{x}}\)có nghĩa khi \(\hept{\begin{cases}x-\frac{1}{x}\ge0\\x>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{x^2}{x}-\frac{1}{x}\ge0\\x>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{x^2-1}{x}\ge0\\x>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^2-1\ge0\\x>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^2\ge1\\x>0\end{cases}}\)

Vậy \(ĐKXĐ:x\ge1\)

3) \(\sqrt{2x-1}\)có nghĩa khi \(2x-1\ge0\) \(\Leftrightarrow x\ge\frac{1}{2}\)

\(\sqrt{4-x^2}\)có nghĩa khi \(4-x^2\ge0\Leftrightarrow x^2\le4\Leftrightarrow x\le2\)

Vậy \(ĐKXĐ:\frac{1}{2}\le x\le2\)

4) \(\sqrt{x^2-1}\)có nghĩa khi \(x^2-1\ge0\Leftrightarrow x^2\ge1\Leftrightarrow x\ge1\)

\(\sqrt{9-x^2}\)có nghĩa khi \(9-x^2\ge0\Leftrightarrow x^2\le9\Leftrightarrow x\le3\)

Vậy \(ĐKXĐ:1\le x\le3\)

19 tháng 11 2016

1/ \(C=\frac{x+9}{10\sqrt{x}}=\frac{\sqrt{x}}{10}+\frac{9}{10\sqrt{x}}\ge2.\frac{3}{10}=0,6\)

Đạt được khi x = 9

19 tháng 11 2016

2/ \(E=\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=x-3\sqrt{x}+2\)

\(=\left(x-\frac{2.\sqrt{x}.3}{2}+\frac{9}{4}\right)-\frac{1}{4}\)

\(=\left(\sqrt{x}-\frac{3}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)

Vậy GTNN là \(-\frac{1}{4}\)đạt được khi \(x=\frac{9}{4}\)

Không có GTLN nhé

5 tháng 5 2019

sử dụng phương pháp miền giá trị

5 tháng 5 2019

bạn nói rõ hơn được không?