Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q=x^2+5y^2+4xy-2x-8y+2015\)
\(=\left(x^2+4xy+4y^2\right)-\left(2x+4y\right)+1+y^2-4y+4+2010\)
\(=\left(x+2y\right)^2-2\left(x+2y\right)+1+\left(y-2\right)^2+2010\)
\(=\left(x+2y-1\right)^2+\left(y-2\right)^2+2010\ge2010\forall x;y\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x+2y-1=0\\y-2=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-3\\y=2\end{cases}}\)
Vậy GTNN của Q là 2010 khi \(x=-3,y=2\)
\(2x^2-4xy+8y^2+7x+6y-15.\)
= \(x^2+x^2-4xy+4y^2+4y^2+7x+6y-15\)
= \(\left(x^2-4xy+4y^2\right)+\left[x^2+7x+\left(\frac{7}{2}\right)^2\right]+\left[4y^2+6y+\left(\frac{3}{2}\right)^2\right]-\left(\frac{7}{2}\right)^2-\left(\frac{3}{2}\right)^2-15\)
= \(\left(x-2y\right)^2+\left(x+\frac{7}{2}\right)^2+\left(2y+\frac{3}{2}\right)^2-\frac{59}{2}\)
Vì \(\left(x-2y\right)^2+\left(x+\frac{7}{2}\right)^2+\left(2y+\frac{3}{2}\right)^2\ge0\forall x;y\)
=> \(\left(x-2y\right)^2+\left(x+\frac{7}{2}\right)^2+\left(2y+\frac{3}{2}\right)^2-\frac{59}{2}\ge0-\frac{59}{2}\forall x;y\)
=> \(\left(x-2y\right)^2+\left(x+\frac{7}{2}\right)^2+\left(2y+\frac{3}{2}\right)^2-\frac{59}{2}\ge-\frac{59}{2}\)
Vậy GTNN của bt là \(\frac{-59}{2}\Leftrightarrow\hept{\begin{cases}x-2y=0\\x+\frac{7}{2}=0\\2y+\frac{3}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2y\Rightarrow\orbr{\begin{cases}x=-\frac{7}{4}\\y=-\frac{3}{2}\end{cases}}\\x=-\frac{7}{2}\\y=-\frac{3}{4}\end{cases}}\)
\(A=\left[\left(2x\right)^2+2.2x.y+y^2\right]+\left(16y^2-8y+1\right)\)
\(=\left(2x+y\right)^2+\left(4y-1\right)^2\ge0\)
Đẳng thức xảy ra khi \(x=-\frac{1}{8};y=\frac{1}{4}\)
\(B=\frac{2x^2-\left(x^2+2\right)}{x^2+2}=\frac{2x^2}{x^2+2}-2\ge-1\)
Đẳng thức xảy ra khi x =0
Tí làm tiếp
\(B=x^2+5y^2-4xy-5y+6=x^2-4xy+4y^2+y^2-2.\dfrac{5}{2}y+\dfrac{25}{4}-\dfrac{1}{4}\)\(=\left(x-2y\right)^2+\left(y-\dfrac{5}{2}\right)^2-\dfrac{1}{4}\)
Do \(\left(x-2y\right)^2\)\(\ge0\left(\forall x;y\right)\)
\(\left(y-\dfrac{5}{2}\right)^2\ge0\left(\forall y\right)\)
\(\Rightarrow\left(x-2y\right)^2+\left(y-\dfrac{5}{2}\right)^2\ge0\left(\forall x;y\right)\)
\(\Rightarrow\)\(\left(x-2y\right)^2+\left(y-\dfrac{5}{2}\right)^2-\dfrac{1}{4}\ge\dfrac{-1}{4}\left(\forall x;y\right)\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}(x-2y)^2=0\\\left(y-\dfrac{5}{2}\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=\dfrac{5}{2}\end{matrix}\right.\)
Vậy \(MinB=\dfrac{-1}{4}\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=\dfrac{5}{2}\end{matrix}\right.\)
\(E=2x^2+5y^2+4xy-4x+2y+8\)
\(=\left(x^2+4xy+4y^2\right)+\left(x^2-4x+4\right)+\left(y^2+2y+1\right)+3\)
\(=\left(x+2y\right)^2+\left(x-2\right)^2+\left(y+1\right)^2+3\ge3\)
Vậy GTNN của E là 3 khi \(x=2\) và \(y=-1\)
\(M=x^2+5y^2-4xy+2x-8y+2018\)
\(M=\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+1+\left(y^2-4y+4\right)+2013\)
\(M=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y-2\right)^2+2013\)
\(M=\left(x-2y+1\right)^2+\left(y-2\right)^2+2013\ge2013\)
\(\Rightarrow MINM=2013\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)