\(M=\frac{2}{6x-5-9x^2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2016

2/(-(9x^2-6x+5)=-2/((9x^2-6x+1)+4)

GTNN là -2/4

giỏi quá tuấn ơi!

4 tháng 11 2019

\(A=\frac{2}{6x-5-9x^2}\)

\(\Leftrightarrow A=\frac{-2}{9x^2-6x+5}\)

\(\Leftrightarrow A=\frac{-2}{\left(3x-1\right)^2+4}\)

Vì \(\left(3x-1\right)^2\ge0\forall x\Rightarrow\left(3x-1\right)^2+4\ge4\)

\(\Rightarrow\frac{1}{\left(3x-1\right)^2+4}\le\frac{1}{4}\)

\(\Rightarrow\frac{-2}{\left(3x-1\right)^2+4}\ge\frac{-2}{4}\)

\(\Rightarrow A\ge\frac{-1}{2}\)

\(MinA=\frac{-1}{2}\Leftrightarrow3x-1=0\Leftrightarrow x=\frac{1}{3}\)

4 tháng 11 2019

Ta có: A = \(\frac{2}{6x-5-9x^2}=\frac{2}{-\left(9x^2-6x+1\right)-4}=\frac{2}{-\left(3x-1\right)^2-4}\ge-\frac{1}{2}\)

Dấu "=" xảy ra <=> \(3x-1=0\) <=> \(x=\frac{1}{3}\)

Vậy MinA = -1/2 <=> x=  1/3

5 tháng 6 2016

-1/2

5 tháng 6 2016

Nhân A với mẫu rồi viết theo phương trình bậc 2 ẩn x, tham số A tình den ta là được

 

17 tháng 2 2020

Ta có : \(C=\frac{2}{6x-5-9x^2}\)

\(\Leftrightarrow C=-\frac{2}{9x^2-6x+5}\)

\(\Leftrightarrow C=-\frac{2}{\left(3x-1\right)^2+4}\)

Để C đạt giá trị nhỏ nhất

\(\Leftrightarrow\left(3x-1\right)^2+4\)đạt giá trị nhỏ nhất

Ta có : \(\left(3x-1\right)^2+4\ge4\)

Dấu " = " xảy ra : 

\(\Leftrightarrow3x-1=0\)

\(\Leftrightarrow x=\frac{1}{3}\)

Vậy \(Min_C=-\frac{1}{2}\Leftrightarrow x=\frac{1}{3}\)

27 tháng 6 2020

Một mảnh đất hình vuông có cạnh dài 12m. Người ta chia mảnh đất thành hai hình chữ nhật để làm sân và xây nhà. Diện tích làng Sơn chiếm 1/3 diện tích mảnh đất. Tính chu vi và diện tích phần đất để xây nhà?

30 tháng 7 2017

a)\(2x^2-4x+7=2x^2-4x+2+5=2\left(x^2-2x+1\right)+5=2\left(x-1\right)^2+5\ge5\)

Dấu "=" xảy ra khi x=1

b)\(9x^2-6x+5=\left(3x\right)^2-2.3x.1+1+4=\left(3x-1\right)^2+4\ge5\)

Dấu "=" xảy ra khi x=1/3

c)\(3x^2-5x+2=3\left(x^2-\frac{5}{3}x+\frac{2}{3}\right)=3\left(x^2-2.\frac{5}{6}.x+\frac{25}{36}-\frac{1}{36}\right)\)

\(=3\left[\left(x-\frac{5}{6}\right)^2-\frac{1}{36}\right]=3\left(x-\frac{5}{6}\right)^2-\frac{1}{12}\ge-\frac{1}{12}\)

Dấu "=" xảy ra khi x=5/6

mấy câu sau tương tự

30 tháng 7 2017

a) 2x2-4x+7=(2x2-2.2x.1+1)+6=(2x-1)2+6

Vì (2x-1)2 >_(lớn hơn hoặc bằng) 0

=>(2x-1)2+6>_6

=> GTNN của 2x2-4x+7=6

b, 9x2-6x+5=[(3x)2-2.3x.1+1]+4=(3x-1)2+4

Vì (3x-1)2>_0

=>(3x-1)2+4>_4

=> GTNN của 9x2-6x+5=4

22 tháng 7 2020

Theo bất đẳng thức Cauchy :

\(G=\frac{9x}{2-x}+\frac{2-x}{x}+1\ge2\sqrt{\frac{9x\left(2-x\right)}{\left(2-x\right)x}}+1=7\)

Đẳng thức xảy ra khi ...

tự tìm dấu = :))

22 tháng 7 2020

Trả lời:

\(G=\frac{9}{2-x}+\frac{2}{x}\)\(\left(ĐK:0< x< 2\right)\)

\(G=\frac{9}{2-x}+\frac{2-x+x}{x}\)

\(G=\frac{9}{2-x}+\frac{2-x}{x}+1\)

Áp dụng BĐT Cauchy ta có:

\(\frac{9x}{2-x}+\frac{2-x}{x}\ge2.\sqrt{\frac{9x}{2-x}\times\frac{2-x}{x}}=2.3=6\)

\(\Leftrightarrow\frac{9}{2-x}+\frac{2-x}{x}+1\ge6+1=7\)

Hay \(G\ge7\)

Dấu "=" xảy ra \(\Leftrightarrow\frac{9x}{2-x}=\frac{2-x}{x}\)

\(\Leftrightarrow\left(2-x\right)^2=9x^2=\left(\pm3x\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}2-x=3x\\2-x=-3x\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2=4x\\2=-2x\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\left(TM\right)\\x=-1\left(L\right)\end{cases}}\)

Vậy \(G_{min}=7\Leftrightarrow x=\frac{1}{2}\)

30 tháng 7 2017

a) \(2x^2-4x+7=x^2+x^2-4x+4+3\)

\(=x^2+\left(x-2\right)^2+3\)

GTNN là 3

b) \(9x^2-6x+5=\left(3x\right)^2-2.3x+2+3\)

\(=\left(3x+\sqrt{2}\right)^2+3\)

Gtnn là 3

tạm thời 2 câu vậy nhé !!!

30 tháng 7 2017

a, \(A=2x^2-4x+7\)

\(=2\left(x^2-2x+1+\dfrac{5}{2}\right)\)

\(=2\left(x-1\right)^2+5\ge5\)

Dấu " = " khi \(2\left(x-1\right)^2=0\Leftrightarrow x=1\)

Vậy \(MIN_A=5\) khi x = 1

b, \(B=9x^2-6x+5\)

\(=9x^2-6x+1+4\)

\(=\left(3x-1\right)^2+4\ge4\)

Dấu " = " khi \(\left(3x-1\right)^2=0\Leftrightarrow x=\dfrac{1}{3}\)

Vậy \(MIN_B=4\) khi \(x=\dfrac{1}{3}\)

c, d, e tương tự

9 tháng 8 2018

tìm tử thức là 2 ko đổi để bt A có GTNN khi mẫu thức \(6x-5-9x^2\)có GTLN mà\(6x-5-9x^2=-(9x^2-6x-5)=-3(3x^2-2x+\frac{5}{3})\)\(=-3[(3x^2-2x\frac{1}{2}+\frac{1}{4})-\frac{1}{4}+\frac{5}{3}]\)    \(=-3[(3x-\frac{1}{2})^2+\frac{17}{12}=-\frac{17}{4}-3(3x-\frac{1}{2})^2\)vì \((3x-\frac{1}{2})^2\ge0\forall x\Rightarrow6x-5-9x^2=-\frac{17}{4}-3(3x-\frac{1}{2})^2\le-\frac{17}{4}\)vậy GTLN \((6x-5-9x^2)\)bằng \(-\frac{17}{4}\)đạt được khi \((3x-\frac{1}{2})^2=0\Rightarrow x=\frac{1}{6}\Rightarrow\)\(A\ge\frac{2}{\frac{-17}{4}}=2\times\frac{-17}{4}=-\frac{17}{2}\)                             vậy MIN \((A)=-\frac{17}{2}\)đạt được \(\Leftrightarrow x=\frac{1}{6}\)