\(M=\dfrac{x^2}{x^2-x+1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2017

Thật tình xin lỗi bạn nhé, bài này mk chưa có học, năm nay mk lớp 7 lên 8 nên mk mới học đến bài phân tích đa thức thành nhân tử thôi.

18 tháng 8 2017

Haiz loạn quá,tui ms học đến phân tích đa thức thành nhân tử= nhiều pp thôi

10 tháng 3 2020

a, ĐK: \(x\ne\pm1\)

b, Ta có:

\(A=\frac{x}{2x-2}+\frac{x^2+1}{2-2x^2}\) \(=\frac{x\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}-\frac{x^2+1}{2x^2-2}\) \(=\frac{x-1}{2\left(x-1\right)\left(x+1\right)}\) \(=\frac{1}{2\left(x+1\right)}\)

c, Với \(x\ne\pm1\), để \(A=-\frac{1}{2}\):

\(\Leftrightarrow\frac{1}{2\left(x+1\right)}=-\frac{1}{2}\) \(\Leftrightarrow x=-2\) (tm)

AH
Akai Haruma
Giáo viên
4 tháng 3 2019

Câu 1:

Tìm max:

Áp dụng BĐT Bunhiacopxky ta có:

\(y^2=(3\sqrt{x-1}+4\sqrt{5-x})^2\leq (3^2+4^2)(x-1+5-x)\)

\(\Rightarrow y^2\leq 100\Rightarrow y\leq 10\)

Vậy \(y_{\max}=10\)

Dấu đẳng thức xảy ra khi \(\frac{\sqrt{x-1}}{3}=\frac{\sqrt{5-x}}{4}\Leftrightarrow x=\frac{61}{25}\)

Tìm min:

Ta có bổ đề sau: Với $a,b\geq 0$ thì \(\sqrt{a}+\sqrt{b}\geq \sqrt{a+b}\)

Chứng minh:

\(\sqrt{a}+\sqrt{b}\geq \sqrt{a+b}\)

\(\Leftrightarrow (\sqrt{a}+\sqrt{b})^2\geq a+b\)

\(\Leftrightarrow \sqrt{ab}\geq 0\) (luôn đúng).

Dấu "=" xảy ra khi $ab=0$

--------------------

Áp dụng bổ đề trên vào bài toán ta có:

\(\sqrt{x-1}+\sqrt{5-x}\geq \sqrt{(x-1)+(5-x)}=2\)

\(\sqrt{5-x}\geq 0\)

\(\Rightarrow y=3(\sqrt{x-1}+\sqrt{5-x})+\sqrt{5-x}\geq 3.2+0=6\)

Vậy $y_{\min}=6$

Dấu "=" xảy ra khi \(\left\{\begin{matrix} (x-1)(5-x)=0\\ 5-x=0\end{matrix}\right.\Leftrightarrow x=5\)

AH
Akai Haruma
Giáo viên
4 tháng 3 2019

Bài 2:

\(A=\sqrt{(x-1994)^2}+\sqrt{(x+1995)^2}=|x-1994|+|x+1995|\)

Áp dụng BĐT dạng \(|a|+|b|\geq |a+b|\) ta có:

\(A=|x-1994|+|x+1995|=|1994-x|+|x+1995|\geq |1994-x+x+1995|=3989\)

Vậy \(A_{\min}=3989\)

Đẳng thức xảy ra khi \((1994-x)(x+1995)\geq 0\Leftrightarrow -1995\leq x\leq 1994\)

7 tháng 12 2018

Câu 1:

\(A=\dfrac{81x}{3-x}+\dfrac{3}{x}=\dfrac{81x}{3-x}+\left(\dfrac{3}{x}-1\right)+1=\dfrac{81x}{3-x}+\dfrac{3-x}{x}+1\ge2\sqrt{\dfrac{81x}{3-x}.\dfrac{3-x}{x}}+1=18+1=19\)

Dấu "=" xảy ra <=> x = 0,3

Câu 2:

\(\dfrac{1}{3x-2\sqrt{6x}+5}=\dfrac{1}{\left(3x-2\sqrt{6x}+2\right)+3}=\dfrac{1}{\left(x\sqrt{3}-\sqrt{2}\right)^2+3}\le\dfrac{1}{3}\)

Dấu "=" xảy ra <=> \(x=\sqrt{\dfrac{2}{3}}\)

Câu 3:

\(A=2014\sqrt{x}+2015\sqrt{1-x}=2014\left(\sqrt{x}+\sqrt{1-x}\right)+\sqrt{1-x}\)

Ta có: \(\left(\sqrt{x}+\sqrt{1-x}\right)^2=x+1-x+2\sqrt{x\left(1-x\right)}=1+2\sqrt{x\left(1-x\right)}\ge1\)

=> \(A=2014\left(\sqrt{x}-\sqrt{1-x}\right)+\sqrt{1-x}\ge2014+\sqrt{1-x}\ge2014\)

Dấu "=" xảy ra <=> x = 1

7 tháng 12 2018

Thanks bn nhìu

vui

23 tháng 1 2017

a) đk: \(x\ne0;x\ne\pm2\)

\(A=\left(\frac{1}{x-2}-\frac{2x}{4-x^2}+\frac{1}{2+x}\right)\left(\frac{2}{x}-1\right)\)

\(=\left(\frac{x+2}{x^2-4}+\frac{2x}{x^2-4}-\frac{x+2}{x^2-4}\right)\left(\frac{2-x}{x}\right)\)

\(=\frac{2x}{x^2-4}\cdot\frac{2-x}{x}=-\frac{2}{x+2}\)

b) \(2x^2+x=0\Leftrightarrow x\left(2x+1\right)=0\Leftrightarrow\left[\begin{matrix}x=0\left(loại\right)\\x=-\frac{1}{2}\end{matrix}\right.\)

\(A\left(-\frac{1}{2}\right)=-\frac{2}{2-\frac{1}{2}}=-\frac{4}{3}\)

21 tháng 5 2017

thi xong còn học chăm chỉ thế

22 tháng 5 2017

1)???

2) \(A=\dfrac{3x^2-8x+6}{x^2-2x+1}=2+\dfrac{x^2-4x+4}{x^2-2x+1}=2+\dfrac{\left(x-2\right)^2}{\left(x-1\right)^2}\ge2\)

Vậy GTNN của A là 2 tại x=2.

3) \(\)Đặt \(a=\dfrac{1}{x+100}\Rightarrow x=\dfrac{1}{a}-100\)

\(D=\dfrac{x}{\left(x+100\right)^2}=a^2x=a^2\left(\dfrac{1}{a}-100\right)=a-100a^2=-100\left(a^2-\dfrac{a}{100}+\dfrac{1}{40000}-\dfrac{1}{40000}\right)=-100\left(a-\dfrac{1}{200}\right)^2+\dfrac{1}{400}\le\dfrac{1}{400}\)

Vậy GTLN của D là \(\dfrac{1}{400}\) tại \(a=\dfrac{1}{200}\Leftrightarrow x=100\)

Sửa đề: \(\frac{x}{x-1}+\frac{x}{x+1}+\frac{2x^2}{1-x^2}\)

Ta có: \(\frac{x}{x-1}+\frac{x}{x+1}+\frac{2x^2}{1-x^2}\)

\(=\frac{x}{x-1}+\frac{x}{x+1}-\frac{2x^2}{x^2-1}\)

\(=\frac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{2x^2}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{x^2+x+x^2-x-2x^2}{\left(x-1\right)\left(x+1\right)}=\frac{0}{\left(x-1\right)\left(x+1\right)}=0\)

Vậy: Biểu thức \(\frac{x}{x-1}+\frac{x}{x+1}+\frac{2x^2}{1-x^2}\) không phụ thuộc vào biến x(đpcm)

28 tháng 2 2020

Mk cho hỏi hạng tử thứ 3 có sai đề ko ( đặc biệt là mẫu)