Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) ĐKXĐ: \(1\le x\le5\)
\(B^2=\left(\sqrt{x-1}+\sqrt{5-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+5-x\right)=8\Rightarrow B\le2\sqrt{2}\)
Xảy ra đẳng thức khi và chỉ khi x = 3
Ta có
\(\frac{\sqrt{x}}{x+\sqrt{x}+1}=\frac{1}{\sqrt{x}}+1+\sqrt{x}\)
Áp dụng bất đẳng thức cô si cho 2 số không âm ta có
\(\frac{1}{\sqrt{x}}+\sqrt{x}\ge2\)
=>\(1+\frac{1}{\sqrt{x}}+\sqrt{x}\ge3\)
dấu bằng xảy ra <=>x=1
A = \(\frac{3x^2+\left(x^2-2x+1\right)}{x^2}=3+\frac{\left(x-1\right)^2}{x^2}\ge3\)
Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy: A min = 1\(\Leftrightarrow x=1\)
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2
Đặt \(A=\frac{x^2-4x+1}{x^2}\)
\(\Leftrightarrow Ax^2=x^2-4x+1\Leftrightarrow x^2-Ax^2-4x+1=0\)
\(\Leftrightarrow x^2\left(1-A\right)-4x+1=0\)
Để pt trên có nghiệm \(\Leftrightarrow\left(-4\right)^2-4\left(1-A\right).1=16-4+4A=12+4A\ge0\)
\(\Rightarrow A\ge-3\) có GTNN là - 3; Dấu "=" xảy ra \(x=\frac{1}{2}\)