\(B=x^2+5y^2-4xy-5y+6\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2017

\(B=x^2+5y^2-4xy-5y+6=x^2-4xy+4y^2+y^2-2.\dfrac{5}{2}y+\dfrac{25}{4}-\dfrac{1}{4}\)\(=\left(x-2y\right)^2+\left(y-\dfrac{5}{2}\right)^2-\dfrac{1}{4}\)

Do \(\left(x-2y\right)^2\)\(\ge0\left(\forall x;y\right)\)

\(\left(y-\dfrac{5}{2}\right)^2\ge0\left(\forall y\right)\)

\(\Rightarrow\left(x-2y\right)^2+\left(y-\dfrac{5}{2}\right)^2\ge0\left(\forall x;y\right)\)

\(\Rightarrow\)\(\left(x-2y\right)^2+\left(y-\dfrac{5}{2}\right)^2-\dfrac{1}{4}\ge\dfrac{-1}{4}\left(\forall x;y\right)\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}(x-2y)^2=0\\\left(y-\dfrac{5}{2}\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=\dfrac{5}{2}\end{matrix}\right.\)

Vậy \(MinB=\dfrac{-1}{4}\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=\dfrac{5}{2}\end{matrix}\right.\)

30 tháng 10 2016

hjvbm 

28 tháng 8 2020

\(C=x^2-4xy+5y^2+10x-22y+28\)

\(=\left(x^2-4xy+4y^2\right)+y^2+10x-22y+28\)

\(=\left(x-2y\right)^2+10\left(x-2y\right)+25+\left(y^2-2y+1\right)+2\)

\(=\left(x-2y-5\right)^2+\left(y-1\right)^2+2\ge2\)

Đẳng thức khó tìm quá huhu

1 tháng 10 2017

max A= -201 tại x=10(câu này dễ)

B= (x-2y+5)^2+(y-1)^2+2 suy ra max B=2 tại y=1 => x = -3. ^_^

\(M=x^2+5y^2-4xy+2x-8y+2018\)

\(M=\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+1+\left(y^2-4y+4\right)+2013\)

\(M=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y-2\right)^2+2013\)

\(M=\left(x-2y+1\right)^2+\left(y-2\right)^2+2013\ge2013\)

\(\Rightarrow MINM=2013\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)

21 tháng 10 2018

\(E=2x^2+5y^2+4xy-4x+2y+8\)

\(=\left(x^2+4xy+4y^2\right)+\left(x^2-4x+4\right)+\left(y^2+2y+1\right)+3\)

\(=\left(x+2y\right)^2+\left(x-2\right)^2+\left(y+1\right)^2+3\ge3\)

Vậy GTNN của E là 3 khi \(x=2\)\(y=-1\)

10 tháng 11 2019

BẠN NÀO LÀM ĐÚNG MÌNH K NHA

10 tháng 11 2019

\(A=-x^2+4xy-5y^2+6y-17\)

\(=-\left(x^2-4xy+4y^2\right)-\left(y^2-6y+9\right)-8\)

\(=-\left(x-2y\right)^2-\left(y-3\right)^2-8\)

Vì \(\hept{\begin{cases}-\left(x-2y\right)^2\le0;\forall x,y\\-\left(y-3\right)^2\le0;\forall x,y\end{cases}}\)

\(\Rightarrow-\left(x-2y\right)^2-\left(y-3\right)^2\le0;\forall x,y\)

\(\Rightarrow-\left(x-2y\right)^2-\left(y-3\right)^2-8\le0-8;\forall x,y\)

Hay \(A\le-8;\forall x,y\)

Dấu"="xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-2y\right)^2=0\\\left(y-3\right)^2=0\end{cases}}\)

                      \(\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)

Vậy MAX \(A=-8\)\(\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)