Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x+\left|2x-5\right|=2x+\left|5-2x\right|\ge2x+5-2x=5.\Rightarrow A_{min}=5.\text{Dâu "=" xay }ra\Leftrightarrow2x-5\ge0\Leftrightarrow x\le2,5\)
\(M=\left|x\right|+\left|x-1\right|=\left|x\right|+\left|1-x\right|\ge x+1-x=1\Rightarrow M_{min}=1.\text{Dâu "=" xay ra}\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\1-x\ge0\end{matrix}\right.\Leftrightarrow0\le x\le1\)
\(A=x-\sqrt{x}\Leftrightarrow A+\frac{1}{4}=x-\sqrt{x}+\frac{1}{4}=\left(\sqrt{x}-\frac{1}{2}\right)^2\ge0\Rightarrow A+\frac{1}{4}\ge0\Rightarrow A_{min}=\frac{-1}{4}.\text{Dâus "=" xay ra khi:}x=\frac{1}{4}\)
Bài 1:
Sửa đề :v
\(B=x\left(x-3\right)\left(x-1\right)\left(x-4\right)\)
\(B=\left(x^2-4x\right)\left(x^2-4x+3\right)\)
Đặt \(x^2-4x=t\)
\(B=t\left(t+3\right)\)
\(B=t^2+3t=t^2+2\cdot t\cdot\frac{3}{2}+\frac{9}{4}-\frac{9}{4}=\left(t+\frac{3}{2}\right)^2-\frac{9}{4}\ge\frac{-9}{4}\forall t\)
Dấu "=" xảy ra \(\Leftrightarrow t=\frac{-3}{2}\Leftrightarrow x^2-4x=\frac{-3}{2}\Leftrightarrow x=\frac{4\pm\sqrt{10}}{2}\)
Bài 2: Mình nghĩ nên sửa đề tìm min \(A=\left|2x\right|+\left|2x-5\right|\)
Bài 3:
\(M=\left|x\right|+\left|x-1\right|\)
\(M=\left|x\right|+\left|1-x\right|\ge\left|x+1-x\right|=1\)
Dấu "=" xảy ra \(\Leftrightarrow x\left(1-x\right)\ge0\Leftrightarrow0\le x\le1\)
Bài 4:
\(A=x-\sqrt{x}\)
Do điều kiện \(x\ge0\)
\(\Rightarrow A\ge0+0=0\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
1. x≥1 <=> \(\frac{1}{x}\le1\Leftrightarrow\frac{1}{x}+1\le2\Leftrightarrow A\le2\Rightarrow MaxA=2\Leftrightarrow x=1\)
2. Áp dụng bđt cosi cho x>0. ta có: \(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\Leftrightarrow P\ge2\Rightarrow MinP=2\Leftrightarrow x=\frac{1}{x}\Leftrightarrow x=1\)
3: \(A=\frac{x^2+x+4}{x+1}=\frac{\left(x^2+2x+1\right)-\left(x+1\right)+4}{x+1}=x+1-1+\frac{4}{x+1}\)
áp dụng cosi cho 2 số dương ta có: \(x+1+\frac{4}{x+1}\ge2\sqrt{x+1.\frac{4}{x+1}}=2\Leftrightarrow A+1\ge2\Rightarrow A\ge3\Rightarrow MinA=3\Leftrightarrow x+1=\frac{4}{x+1}\Leftrightarrow x=1\)
Đặt \(P=\dfrac{2x^2+x}{\left(x+1\right)^2}\Rightarrow P+\dfrac{1}{4}=\dfrac{9x^2+6x+1}{4\left(x+1\right)^2}=\dfrac{\left(3x+1\right)^2}{4\left(x+1\right)^2}\ge0\).
Dấu "=" xảy ra khi và chỉ khi \(x=-\dfrac{1}{3}\).
Vậy..
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2