Tìm GTNN của biểu thức  A=(y-2x-1)^2+(3-x)^2-4y+2019

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2020

Ghi lại đề ^_^

\(A=\left(2x-y+1\right)^2+\left(x-3\right)^2-4y+2019=\frac{1}{5}\left[\left(5x-2y-1\right)^2+\left(y-17\right)^2\right]+1971\ge1971\)

Dấu "=" xảy ra khi x=7 , y=17

18 tháng 1 2021

Tìm GTNN??

Ta có: \(A=\frac{2x^2+2x+7}{x^2+x+1}=\frac{2\left(x^2+x+1\right)+5}{x^2+x+1}=2+\frac{5}{x^2+x+1}\)

(Vì \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\) )

\(\Rightarrow A=2+\frac{5}{x^2+x+1}\le2+\frac{5}{\frac{3}{4}}=\frac{26}{3}\)

Dấu "=" xảy ra khi: x = -1/2

21 tháng 10 2020

Vì ( x2 + 1 )2\(\ge\)0\(\forall\)x

=> A = ( x2 + 1 )2 + 4\(\ge\)4

Dấu "=" xảy ra <=> ( x2 + 1 )2 = 0 <=> x2 = - 1 ( vô lý )

=> Không xảy ra dấu bằng 

Ta có : A = ( x2 + 1 )2 + 4 = x+ 2x2 + 5 = x2 ( x2 + 2 ) + 5

Dễ thấy : x2 ( x2 + 2 )\(\ge\)0\(\forall\)x

=> A = x2 ( x2 + 2 ) + 5\(\ge\)5

Dấu "=" xảy ra <=> x2 ( x2 + 2 ) = 0 <=>\(\orbr{\begin{cases}x^2=0\\x^2+2=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=0\\x^2=-2\left(loai\right)\end{cases}}\)

Vậy minA = 5 <=> x = 0

A=(x2+1)2 +4

= [(x2)2 + 2x1 + 1 ] +4

= [x4+2x+1] +4

25 tháng 9 2020

a) A=x^3 + 3x^2*5 + 3x*5^2 + 5^3

       =(x+5)^3

Thay x = -10 vào biểu thức A ta được:

A  = (-10+5)^3

    =(-5)^3

    =-75

Làm tương tự nhé

21 tháng 9 2020

A = ( x - 3 )3 - ( x + 1 )3 + 12x( x - 1 )

= x3 - 9x2 + 27x - 27 - ( x3 + 3x2 + 3x + 1 ) + 12x2 - 12x

= x3 - 9x2 + 27x - 27 - x3 - 3x2 - 3x - 1 + 12x2 - 12x

= ( x3 - x3 ) + ( 12x2 - 9x2 - 3x2 ) + ( 27x - 3x - 12x ) + ( -27 - 1 )

= 12x - 28

+)Với x = -2/3 => A = \(12\times\left(-\frac{2}{3}\right)-28=-8-28=-36\)

+) Để A = -16 => 12x - 28 = -16

                      => 12x = 12

                      => x = 1

21 tháng 9 2020

a) \(A=\left(x-3\right)^3-\left(x+1\right)^3+12x\left(x-1\right)\)

\(=\left(x^3-9x^2+27x-27\right)-\left(x^3+3x^2+3x+1\right)+\left(12x^2-12x\right)\)

\(=12x-28\)

b) Thay \(x=\frac{-2}{3}\)vào biểu thức A ta có:

\(A=12.\left(\frac{-2}{3}\right)-28=-36\)

Vậy giá trị của A là -36 tại x=-2/3

c) \(A=-16\Rightarrow12x-28=-16\)

\(\Leftrightarrow12x=-16+28\Leftrightarrow12x=12\Leftrightarrow x=1\)

Vậy để A=-16 thì x=1

20 tháng 12 2020

Bài làm 

\(\left(x^2-2\right)\left(1-x\right)+\left(x+3\right)\left(x^2-3x+9\right)\)

\(=x^2-x^3-2+2x+x^3+27=x^2+2x+25\)

20 tháng 12 2020

=x2-x3-2+2x+x3+33

=x2-x3-2+2x+x3+27

=x2+25+2x

21 tháng 2 2017
Câu 1:Hệ số của trong khai triển của
(Nhập kết quả dưới dạng số thập phân gọn nhất).
\(\left(\frac{1}{2}x-3\right)^3\)
\(=\frac{1}{8}x^3-2,25x^2+13,5x-27\)
ĐS: 13,5
Câu 2:Với mọi giá trị của , giá trị của biểu thức bằng
\(\left(2x+3\right)\left(4x^2-6x+9\right)-2\left(4x^3-1\right)\)
\(=8x^3+27-8x^3+2\)
= 29
ĐS: 29
Câu 3:Hệ số của trong khai triển của là .
\(\left(2x^2+3y\right)^3\)
\(=8x^6+36x^4y+54x^2y^2+27y^2\)
ĐS: 54
Câu 4:Với , giá trị của biểu thức bằng .
\(x^3-y^3-3xy\times1\)
\(=x^3-y^3-3xy\left(x-y\right)\)
\(=x^3-3x^2y+3xy^2-y^3\)
\(=\left(x-y\right)^3\)
= 13
= 1
ĐS: 1
Câu 5:Với , giá trị của biểu thức bằng
\(x^2+2xy+y^2-4x-4y+1\)
\(=\left(x+y\right)^2-4\left(x+y\right)+1\)
= 32 - 4 . 3 + 1
= - 2
ĐS: - 2
Câu 6:Giá trị nhỏ nhất của biểu thức
\(4x^2+4x+11\)
= 4x2 + 4x + 1 + 11
= (2x + 1)2 + 11 \(\ge\) 11
ĐS: 11
Câu 7:Cho . Khi đó bằng
(x - y)2 = 52
<=> x2 - 2xy + y2 = 25
<=> 2xy = 15 - 25
<=> 2xy = - 10
<=> xy = - 10 : 2
<=> xy = - 5
x3 - y3
= (x - y)(x2 + xy + y2)
= 5 . (15 - 5)
= 50
ĐS: 50
Câu 8:Giá trị lớn nhất của biểu thức
Q = 5 - x2 + 2x - 4y2 - 4y
= 7 - x2 + 2x - 1 - 4y2 - 4y - 1
= 7 - (x - 1)2 - (2y + 1)2 \(\ge\) 7
Câu 9:Giá trị của x thỏa mãn
(x + 3)2 - x2 + 9 = 0
<=> (x + 3)2 - (x - 3)(x + 3) = 0
<=> (x + 3)(x + 3 - x + 3) = 0
<=> 6(x + 3) = 0
<=> x + 3 = 0
<=> x = - 3
ĐS: - 3
Câu 10:Giá trị nhỏ nhất của biểu thức
x2 - 4x + 4y2 + 12y + 13
= x2 - 4x + 4 + 4y2 + 12y + 9
= (x - 2)2 + (2y + 3)2 \(\ge\) 0
21 tháng 2 2017

@Phương An nhanh thế

20 tháng 3 2017

1)

\(A=\left(x-y+1\right)^2+\left(y-2\right)^2+5\ge5\)

GTNN A=5 khi y=2 và x=1

2)

\(x+y+z=0\Rightarrow x^3+y^3+z^3=3xyz\)

\(A=\dfrac{x^3+y^3+z^3}{xyz}=\dfrac{3xyz}{xyz}=3\)